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PREFACE

Chaos and nonlinear dynamics can be expected to play an increasingly important role in
atmospheric research and applications to Army problems. This report is intended to give a
survey of the whole field of nonlinear dynamics (or "chaos theory" as it is popularly called)
in a compressed form. It is slightly expanded from a series of lectures given over the space
of a single month in 1989. This young and rapidly growing field is already very extensive,
so that this survey cannot be deep or detailed. In particular, no pretense of mathematical
rigor is made. But I do insist on stating key definitions or theorems carefully so that
the reader need not settle for just a qualitative, intuitive understanding. My intention is
to touch on the main ideas so that the reader can see if his or her special discipline fits
in anywhere and if so, can get an approximate notion of what new ideas or possibilities
nonlinear dynamics brings to that field. The cited literature then allows the reader to
proceed further if he or she desires.

I thank Harry Auvermann for suggesting that I give these lectures in uie first place, for
inviting me then to write them up in the present more coherent form, and for taking care
of all the official, administrative, and practical details. My especial thanks go to David
Bandelier who worked with me to turn my manuscript and rough sketches into print. It
is a great comfort to see one's handwritten manuscript come back promptly, transformed
into practically flawless typescript on the first draft.
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1. INTRODUCTORY REMARKS

1.1 Linear Versus Nonlinear

A dynamics describes the time evolution of a, system. As such, the concept is not
confined to physics, but occurs in many other fields as well - in related sciences like
engineering, chemistry, and biology, but also in ecology, economics, etc. A nonlinear
dynamics describes the time-evolution via nonlinear equations of motion, which may be
ordinary differential-equations, partial differential equations, difference equations, iteration
of maps, etc. Nonlinear motion equations have been around a long time - since the
beginning of science, in fact - so why the sudden blooming of nonlinear dynamics as a new
discipline in the last 20 years or so?

The answer is that up to that time nonlinear equations were regarded as not
essentially different from linear ones - more complicated and difficult to solve, of course,
but nothing that suitably refined linear approximations couldn't handle. Analytic
("closed form") solutions were emphasized in textbooks with the confident expectation
that "nonanalytic" solutions, if they existed, formed a small subset of all solutions which
didn't greatly add to the understanding of the phenomena. But about 20 years ago it
was realized that nonlinear equations are essentially different from linear ones, that they
possess properties which can never be captured by linear approximations, that analytic
solutions are the exception, not the rule, and that solutions sets may show "deterministic
chaos."

Linear equations enjoy by definition the property of superposition. That is, linear
combinations of solutions are also solutions: the solutions form a linear, or vector, space.
Linear theories are highly structured theories, and one has many helpful theorems at hand.
For example, a general solution exists, solutions have only "fixed" singularities, that is,
those occurring in the linear equations themselves. But do not get the idea that linear
theories are considered passe or discredited, now that we are elucidating the mysteries
of nonlinear dynamics. Some of the most beautiful and accurate theories in physics are
linear. Witness the Maxwell theory of electromagnetism, or quantum mechanics itself,
the fundamental theory of the subatomic world. Indeed, today no failure of quantum
mechanics is known.

Nonlinear equations are all the rest: all those which are not linear. Most of
the convenient properties of a linear dynamics mentioned above are lost: there is no
superposition and no general solution; analytic solutions are rare or nonexistent; solutions
may have singularities not present in the motion equations, and these may depend on
the initial conditions, etc. However, interesting new properties show up in compensation.
Asymptotic (time -4 oo) solutions are often independent of initial conditions and lie on
low-dimensional "attractors" in phase space. There is a complicated set of these stable
regimes joined by bifurcations of various types. There may exist "chaotic" regimes.

Incidentally, the reader should not worry if some of the statements in these prelimi-
nary remarks of chapter 1 seem a bit vague or elusive by reason of undefined terms. For
now, it is enough that they carry some sort of intuitive meaning. All important terms and
concepts will be defined carefully at the proper places in this report.
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1.2 The Goals of Nonlinear Dynamics

The dynamics that will be our main focus of attention in this report will be specified
by one or several first order ordinary differential equations in time,

dx
xi=f(z,t) d -- (1-1)

or by a map x s i F(x) which is iterated:

x, F(x), F[F(x)], F[F[F(x)]], .... (1-2)

The set of continuous time solutions, or orbits of (1-1) is called a flow, while the set
of discrete-time orbits (1-2) is sometimes called a cascade. Both f and F depend on
parameters which can be varied.

What information do we seek in nonlinear dynamics?

a. The geometry, or more often, topology of the flow (or cascade) as a whole: phase
portraits, stable and unstable manifolds, various low-dimensional invariant attracting sets
if they exist.

b. Bifurcation points, that is, those parameter values at which the flow "changes
qualitatively."

c. The characteristics of "chaotic" flows, and the various paths to chaos which the
dynamics admits.

What mathematical tools are available for this search? There exist theorems, far fewer
than in linear dynamics, which limit the possibilities in nonlinear dynamics. Numerical
computation (sometimes called "experimental mathematics") plays a big role in discovering
the information listed above and in suggesting and motivating, if not proving, theorems
about a particular dynamics.

1.3 "Chaos"

The quotation marks here signal that a consensus has not yet been reached on the precise
definition of this term. This accounts for the many apparent contradictions and fruitless
controversies in this subject. Following current custom, we shall mean by "chaos" any or
all of the following properties: sensitive dependence on initial conditions, broadband power
spectra, decaying correlations, or randomness or unpredictability of orbits as measured by
positive algorithmic complexity or entropies of the various kinds. These properties are not
all independent.

Of these, sensitive dependence (on initial conditions understood), abbreviated in this
report as SD, is by far the most important ingredient of "chaos." In fact, in its strong,
or exponential, form SD is accepted by most as the definition of chaos. The intuitive
meaning of SD is the unpredictability - or uncomputability - in principle of some orbits.
That is, inevitable errors in initial conditions, no matter how small, may get magnified on
computation, so that the computed orbit (or some observable function of the orbit) bears

12



io resemblance to the actual orbit (or function thereof). This hm; nothing to do will it is-.
or perturbations from outside the system. Sensitive dependence is an intrinsic proprty
of the dynamics in some parameter regimes; it is true 'deternifisic chaos." Obviously
this bears on the ancient -philosophical dichotomy between determinism and chance (and
seems at first sight to contradict i!).

In a system which displays 'chaos," there may be s'veral sequences of regimes leading to
"chaotic behavior, several "paths to chaos," so to say. ].he uziversaliy of these varicus
paths in systems superficially very different (for example, iterating one-dime-nional maps

V and viscous, incompressible fluid flow) is a surprising theoretical and experimental result

To give the reader a preliminary feeling for sensitive dependence, this perhaps most
important concept of nonlinear dynamics, we shall illustrate it on the simple dynamics
of a 1D (one-dimensional) map. The other attributes of "chaos" mentioned above will
be covered later in the main text. Consider the particular ID map F(x) -pz(1 - x)
with 0 < z < 1 and 0 < u < 4, that is, the iteration scheme x.,t = izpX(1 - x). 12 =
0,1,2,3,---, defining the orbit (1-2). Choose the parameter value p = 4 and substitute
,1 sin2 n 0 < ,. < 1. Then the iteration scheme takes the form sin2 7r0,,+. =

4 sin2 7,- cos2 -,, that is,
0.+1 = 2,(modl) (1-3)

where (modl) means that any integral part of 20, is chopped off so that the result lies in
the interval (0,1). We can actually get an "analytic" solution (!) for this parameter value,
namely

0. = 2"0o(modl),
where 8o E (0, 1) is the initial value. Now shift the initial point slightly: &0 = Oo + e ; then

On - On = 2ne =,e "

(as long as ?"E < 1), that is, exponential separation of the two initially very close orbits
with Lyapunov exponent In2. Obviously, the "error" in the orbit will get big for n large
enough, no matter how small e. This is SD (in particular, exponential SD).

To be more quantitative about the SD, write the initial value 0 0 in binary notation. For
example,

Oo = 1/2 + 1/4+ 1/16+ 1/128+... = 0.1101001.... (1-4)
Then iteration algorithm (1-3) amounts to shifting the "decimal point" to the right by one
and dropping the digit to the left of this point. For the value (1-4),

0 =.1101001 .. , 0 =.101001 .-. , 0 = .01001-.-, 3 = .1001---, etc.

We see that O, depends on the (n + 1)st and nigher digits of 0o, so when n is large, the
value of On depends extremely sensitively on the precise value of 0o. For instance, let 00 and
0' differ first in the (n + 1)st place, where 0o has a 0 and O has a 1. Then O, - 00 = 2-n
at most (<<< 1 for large n). But Or. = .0... and 0' = .1 --- , so that they could differ
by as much as 1, or the whole domain (0,1) of the logistic map for 0 < /L < 4. On a
digital computer with capacity 2 N bits, the computed orbit for a given 0o hasin general
no rescmblance to the real orbits for times n > N.

Ex. 1.1 Take Oo = 1/7. Then we know that the exact orbit is

1/7, 2/7, 4/7, 1/7, 2/7, 4/7, 1/7-.-, (1-5)

that is, a periodic orbit of period 3. Now perform the iteration (1-3) on a pocket calculator
or computer and compare with (1-5) for large n.

13



2. FUNDAMENTALS OF CONTINUOUS TIME SYSTEMS

2.1 Flows

A system of N first order ordinary differential equations in time t,

defines a flow. Here we have taken the flow to be in 30' = the set of an real N-tupies
(XITX22--- z.:), which is the usual case; the function f, which thus has N components

(flf2-- fN), maps 3V into RIV in symbols f : -x ., O. V. If f(xzt) f(x)
does not explcitly depend on t, the flow is called autonomous. V", or the subset
of OV" in which the flow is confined, is called the phase space of the flow. A so-
lution x(t) = (X,(t),X 2 (t),---XN(t)) of the flow (2-1) with initial value x0 - x(O) -
(XI (0), X2 (0), - - - Xfl(0)) is called the orbit. A graph of all orbits or some subset of them in
phase space is called a phase portrait, and is useful to visualize the flow as a whole in the
neighborhood of some interesting point or other structure.

Orbits of an autonomous flow do not intersect! Every point in phase space lies on one and
only one orbit. This comes from a beautiful theorem on the uniqueness of orbits, see, say,
GH (1983, Th. 1.0.1) which states precisely:

Let f be C1 in RV. For any open set U C R' , 3 a time interval
(-c, c) such that the orbit 5(xo) exists and is unique for every x0 E U. (2 - 2)

For technical mathematical symbols and terms here and hereafter, consult the mathemat-
ical Glossary at the end of the Guckenheimer and Holmes reference above. We shall use
the symbol 3, "there exists," quite often. We shall usually assume the hypotheses of this
theorem fulfilled for our flows, so that orbits like those shown in Fig. 2.1 are excluded.

Fig. 2.1 Excluded orbits
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The reader might think that restricting our dynamics to autonomous flows (as we shall
do) is much too narrow. It seems to rule out higher order motion equations, for example,
second order equations such as Newton's laws deliver, all cases with forcing terms, and
so on. But this is not so. By enlarging our phase space we can include those cases too.
An example will make this clear. Consider the nonautonomous, second order dynamics
defined by i + x = acoswt, a harmouically driven linear harmonic oscillator with position
coordinate x. Set x, = x. 2 =:i, x3 wt. Then we get

i:l = X2, :2 = -2 + acosX3 , :3 = W

But this is just an autonomous flow in R3! In particular, even without the forcing term
(a = 0), the phase space is V, not R' = W; phase space is the space of position and
velocities (or momenta), so it has dimension 2m for a configuration space of dimension m.
Hence without loss of generality we shall assume all flows autonomous hereafter.

2.2 Linear Stability Analysis

2.2.1 Case of Linear Flows

Consider the linear autonomous flow i = Ax, where A is a real N x N matrix. We
treat the case which usually occurs in applications: A can be diagonalized by a similarity
transformation

T -'AT=A , (2-3)

where A is diagonal with the eigenvalues A,, A2,"" AN of A on the diagonal. Thus the
corresponding eigenvectors el, e2 ,--, eN,

Aei = Aei , i =1,2,-'- N, (2- 4)

are linearly independent (span RN), and the columns of T arc the components of these
eigenvectors. (We prefer to regard A as a linear operator and the ei as vectors, basis-
independent concepts; nevertheless, entirely equivalently one can interpret A as an N x N
matrix, the ei as N x 1, or column, matrices, and Aei as matrix multiplication.) The
secular equation

IA -All = det(A- A1) = 0, (2-5)

where 1 = unit matrix, determines the eigenvalues Ai.

The completely general case, when the eigenvectors of A may not span RN, so that A is not
diagonalizable, is treated in appendix A. A can still be put into a simple, standard form
(Jordan canonical form) by a similarity transformation, and the resulting linear stability
analysis is not essentially different from the diagonalizable case.

We now define some important subspaces of phase space. Divide tile cigerivectors into
three subsets,

{UI,Ut2, "UNu} such that ReAi>0,

{VI,V2,'''VN} such that Jei <0 , (2-6)

{WI,W2,'"WN,} such that ReAi = 0

15



with A. + N' + N = N. Then define

Unstable subspace E = - span{u,u 2,.--UNJ},

Stable subspace E =span{v,v2,---vN, , (2-7)

Center subspace E:-span{wj,w 2,--. wjvzJ.

The reason for the nomenclature is this: we assert that every o.bit based at xo E E- decays
exponentially in t; every orbit based at xo E E" blows up exponentially in t; and every
orbit based at xo E Ec is constant in t, as t -- +oo. We also claim that each subspace is
invariant (carried into itself) under the flow. Both of these assertions are easily seen by
noting that the solution of :i Ax is x(t) = exp(tA)xo. Taking xo - - ej in the
stable subspace El, for example, we see that the orbit is

exp(tA)xo = exp(tA) E cjej = Ecjexp(tA)ej = Ecje- j e E" , (2 - 8)

Q.E.D. Moreover, since ReAj < 0, the length 1x(t)JI -- 0. Similarly for Xo E E",
Ilx(t)JI - +0o; for x0 E Ec, IIx(t)ll = IIxo- = const.

A word on the general case: the three subspaces are defined by (2-6) and (2-7), where
the vectors are now generalized eigenvectors to the eigenvalues determined by (2-5). One
can show that these subspaces are invariant and that every orbit based in Es, Eu, or Ec
decays exponentially, blows up exponentially, or varies algebraically in t as t -4 +oo. The
only difference is that powers of t times an exponential in t are in general allowed.

Note that the point x* = 0 (the zero vector) is a fixed point: ;* = 0 for the linear flow,
in fact the only fixed point. The phase portrait of the flow near the fixed point can be
constructed, and the subspaces Eu, Es, and Ec indicated on the same graph.

Ex. 2.1 Take A = (0 J. The phase space is R2 = the plane.

a. Find the eigenvalues and eigenvectors. Is A diagonalizable?

b. Find Eu, E8 , and Ec.

c. Draw the phase portrait around x* = 0 = (0, 0), and indicate the three
subspaces.

Ex. 2.2 Same question for

11 -1 0)
A= (1 -1 , phase space is R'.

0 0 2

As to part c. of Ex. 2.2, here there is a pair of complex conjugate eigenvalues and
cigenvectors: A+,e+ and A- = A*e_ = e* where * is complex conjugate. Form two
real vectors el, e2 from complex combinations of e+ and e-; then el, C2 span the same real
two-dimensional subspace of R3 as e+ and e. Express the real orbits in terms of el and
e2. You will find spiralling motion.
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2.2.2 Case of Nonlinear Flows

The linear stability analysis of the flow i = f(x), in gencral nonlinear, now follows easily
from that of linear flows. Consider a fixed point x* of the flow, defined by vi* = f(*) = 0.
We linearize the flow about x*. Set x = x* + u, where hull is small in some sense, and
keep only terms of 0(u) in the calculation. Substitute x = x* + u into the flow equations,
expand f(x* + u) in a power series in u about x*, and keep only the first two terms. For
the 0(u) part we get = Df(x*)u , (2- 9)

where Df(x*) is the Jacobian matrix evaluated at the fixed point,

[Df(x*)]3 - , i,j = 1,2,---N. (2-10)

But (2-9) is just a linear flow ,ith A = Df(x*). So we find the eigenvalues and eigenvectors,
invariant subspaces E', E', EC, etc.; that is, we perform the linear stability analysis for
this fixed point just as in section 2.2.1. We expect the local nonlinear flow around x* to
be indistinguishable from the linear flow governed by A = Df(x*). This is true with an
important proviso to be made below.

We work out an illustrative example: consider the van der Pol oscillator j+b(x2 -1)i+x =
0, b > 0. As an autonomous flow in J2 it reads ab = x 2, x 2 = -xi -b(xI - 1)X 2 , so fh = X2,
f2 = -xI - b(x - 1)x 2 . The only fixed point is x* = (0,0). The partial derivatives of f
are

0,f - = '3f 2f_ =_bafx_ , afl 9x, =f -1 - 2bxIX2, 2

so the Jacobian matrix is
Df(x* =0)=( 0 1 l (2-11)

The eigenvalues of this are A± = b/2 ± (b2 /4 - 1)1, and the corresponding eigenvectors e±

are found to span R2. Now ReA± > 0, so

Eu=span{e+,eC_ }=R2 , E 8 =E'=0. (2-12)

All orbits are repelled exponentially from the fixed point 0.

2.3 Stability Types of Fixed Points

We now have to elucidate the key notion of stability (for a fixed point here, but for more
general structures later), and to see what linear stability analysis has to say about it. For
the fixed point x* of a general autonomous flow, which we assume is confined to the open
set U C RN, we have the definitions (GH, p.3):

The fixed point x* is stable if for every neighborhood V C U
of x* there is a neighborhood V C V of x* such that every
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solution x(t) = (xo) ;th Xo E V1 is defined and E ." for
all t > 0. (2 - 13a)

The fixed point x* is asymptotically stable if it is stable and for
every neighborhood V C U of x* a neighborhood V4 C V of x*
exists such that Ot(xo) -- x*, t -- +0o, for every x0 E V1. (2 - 13b)

The fixed point x* is unstable if it is not stable. (2 - 13c)

See Fig. 2.2.

Fig. 2.2 Stability types illustrated: on the left, a center (stable but not asymptotically
stable); on the right, a sink (asymptotically stable)

The fixed point has special names in the first two cases: x* is a center if it is stable but
not asymptotically stable; it is a sink if it is asymptotically stable. It is useful to spell out
the definition of unstable in positive terms by negating the definition of stable. Namely:

The fixed point x* is unstable if a a neighborhood V C U of x*
such that for all neighborhoods V1 C V of x* 3 an orbit based at
Xo E V which 0 V for some t > 0. (2-14)

Loosely transcribed, these careful definitions can be phrased as follows. A fixed point x*
is stable if for every neighborhood V of a.*, we can keep all orbits in V forever if we start
them close enough to x*. It is asymptotically stable if it is stable and if all orbits converge
to x* if we start them close enough to x*. It is unstable if we can find a neighborhood V
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of it such that from any neighborhood V of x* contained in V, no matter how small, at

least one orbit started in V escapes from V at some time.

To convince yourself of the necessity of the details which seem to make the carefil

definitions (2-13) unnecessarily pedantic and complicated, try answering the questions

in Ex. 2.3.

Ex. 2.3 Do the following statements say anything about the stability type of x*?

a. For every neighborhood V of x* an orbit based in V converging to x* is

observed.

b. For every neighborhood V of x* an orbit based in V which escapes V is

observed.

c. We can find a neighborhood V of x* such that for every neighborhood V C V

of x*, every orbit based in V stays in V for all t > 0.

2.4 Connection of Stability and Linear Stability Analysis

The general idea is that the local behavior of the linearized flow around x* carries over to

the nonlinear flow, thus selecting one of its stability types. To make this precise, let us

call x* hyperbolic (sometimes nondegenerate) if Df(x*) has no eigenvaluc A with ReA = 0.

That is, if EC = 0. If then E- = 0, x* is called a source; if both E' and EU 0, x* is

called a saddle point. See Fig. 2.3.

Eu

sink source saddle point

Fig. 2.3. Left to right: a sink, a source, a saddle point
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Then there exists a homeomorphism h in some neighborhood V of x* -taking the orbits
Oj(xo) of the nonlinear flow into the orbits exp(tDf(x*))uo of the linearized flow and
preserving the sense of the orbits (GH, Th 1.3.1).

Def. A homeomorphism h: U - V maps open set U into open
set V such that h is continuous and h- ' exists and is- continuous. (2 - 15)

See Fig. 2.4.

Homeoniorphism is the basic concept of topology. A topological property is one invariant
under all homeomorphisms (thus under stretching compressing, twisting, etc., but not
tearing). The importance of homeomorphisms and topology in nonlinear dynamics is that
stability is a topological notion!

Thus in the hyperbolic case the linearization determines the asymptotic time behavior of
the nonlinear flow and hence x* 's stability type. We have

x* is asymptotically stable iff only Es # 0 (x* a sink).
x* is unstable iff Eu # 0 (x* is a source or a saddle point).

(Hyperbolic case) (2- 16)

Iff = "if and only if." The center case is absent. These are the only "two possibilities. If
ReA = 0 for any eigenvaluc of the Jacobian matrix (EC # 0), the stability of x* cannot in
gencral be dctermimed by the linearization.

E's

.h

Fig. 2.4 Homeomorpliism from the nonlinear to the linearized flow around a fixed point.
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2.5 Topological Equivalence of Flows

The above section motivates the introduction of another topological notion which will be
useful when we come to discuss bifurcations. First we give the rigorous definition, then
try to give the reader an intuitive feeling for it by some remarks. Consider two flows in
&N, = f(x), x E X, and = (y),y E Y, with orbit functions of md O, respectively.

Def. The f-flow and the g-flow are topologically equivalent iff
there exists a homeomorphism h : X -+ Y such that for every ix,
hooh = 0 ohfor some t2 -. (2-17)

Here o is functional composition, namely f o g(x) = f(g(x)). If the homeomorphism is
realized by the function y = h(x), this means

h(qf,(x)) = Of (h(x)), all x E X. (2-18)

That is, there exists a 1-1 bicontinuous map which takes every point x on an orbit of the
f-flow at time tl into a point y = h(x) of the orbit of the g-flow at a time t 2. See Fig. 2.5.

More briefly, h maps every orbit of the f-flow into an orbit of the g-flow in a continuous
manner, and vice-versa. Stated yet another way, the f-flow can be continuously deformed
into the g-flow, and vice-versa. Thus the two flows are really the same up to a "change of
coordinates," as (2-17) validates. In this language the theorem in section 2.4 says that the
nonlinear flow is topologically equivalent to the linearized flow around a hyperbolic fixed
point.

Fig. 2.5 Mapping of topologically equivalent flows
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2.6 Stable and Unstable Manifolds of a Fixed Point

These are generalizations of the stable and unstable subspaces of the linearized flow to the
full nonlinear flow. We shall give loosely stated definitions sufficient for our purposes.

The (global) stable manifold W of a hyperbolic fixed point x* is the set of all t.hosv
points which converge to x* under the flow. That is, all x E phase space such that
qt(x) -* x*, t -4 +oo. Similarly, the (global) unstable manifold Wu of x* is the set of
all those points which "diverge from x* under the flow" or, more precisely, all those points
which converge to x* as time runs backwards: Ot(x) --* x*, t - -oo. Both W S and W u

are invariant sets, where the general definition is: set S is invariant if Ot(S) C S, -00 <
t <c o. See Fig. 2.6, which illustrates W' and Wu, both 1D (one-dimensional) for a 2D
flow, and also their relations to E and Eu.

Then we have the Stable Manifold Theorem (GH, Th 1.3.2), which states that W s and
W' have the same dimensions as Es and Eu, respectively, and are tangent to them at the
hyperbolic fixed point x*. Figure 2.6 illustrates this.

We detail some properties of W" and WUin the following. Since an orbit is an invariant
set and orbits do not intersect, we see that W' and Wu are composed of entire orbits.
Clearly, given two (hyperbolic understood) fixed points x*, y*, WS(x*) and WS(y*) cannot
intersect, by definition. The same goes for Wu(x*) and Wu(y*).

But W- and W" of two different fixed points or of the same fixed point may intersect
without contradiction. These intersections must of course be composed of whole orbits
cominion to both W and W". Figure 2.7 illustrates some of these properties.

2.7 Bifurcations

In section 1.2, we described a bifurcation as a "qualitative change in the flow." But what

does this mean precisely? If the orbits are all straight lines and, by changing a parameter,
suddenly become wavy lines, is this a bifurcation? Fortunately, we now have the topological
tools at hand to pin this notion down precisely. But first we motivate the general definition
by treating local bifurcations near fixed points.

2.7.1 Local Bifurcations Near Fixed Points

Consider a 1D real flow :i = fl(x), x E R, where p is a parameter. Let x* be a fixed point,
and consider the linearized motion (2-9). The Jacobian matrix in this case is the ordinary
derivative:

Df,(x*) df 1,(x) A
dx-- (2- 19)

the eigenvalue itself. Thus in the case A 0 0 (note A is real) we have the hyperbolic case,
and the stability type of x* is completely determined by the principle (2-16). Namely, x*
is asymptotically stable if A < 0 and unstable if A > 0.
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Es

WW

Fig. 2.6 Relation of W- and E and of Wu, Eu of a fixed point.

this is out!
XI2

WS (x) Wu (x)

homnoclinic orbit

f (x I ) ---- (4 2 )  A saddle point:
~_fi n_, different

x non-intersecting orbits
6 i

heteroclinic orbit

Fig. 2.7 Top: forbidden transverse intersection of stable manifolds. Bottom: allowed
cases of stable and unstable manifolds.

a. ID laser equation

2 iO >x=ax-tzx X > 0 fixed, a 0 variable. (2-20)
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x has the interpretation of the number of laser photons, or intensity, so phase space is

0< x < o0. The fixed points are x* = 0, x* = a/. ) = a - 2K.x*, so A, = o, A2

Thus for a < 0, xj is asymptotically stable, x* is unstable. For a > 0, x* is unstable,

Xz is asymptotically stable. The value a = 0 is the bifurcation value of the parameter,

separating these two different stability regimes. This is displayed in a bifurcation diagram,

which plots the fixed points against the parameter and indicates their stability. See Fig.

2.8.

stable X.

unstable x = K,

*=a

Fig. 2.8 Bifurcation diagram for the ID laser

b. Pitchfork bifurcation

PX - X3  p > 0 variable. (2-21)

Here -oo < x < oo. The fixed points are xT = 0, x = ±V/'. A -- - 3(x*) 2 , so A1 = p,

A+ = -2y. Hence for p < 0, x* is asymptotically stable and the fixed points x don't

exist (since phase space is real). For y > 0, xI is unstable, x. are asymptotically stable.

We see that p = 0 is the bifurcation value, and the bifurcation diagram has the form in

Fig. 2.9.

The linearized motion in the ID case is u = etuo, so the phase portraits arc as shown in

Fig. 2.10 in the different stability regimes.
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x.

sta b le . . .
unstable- -= - 4 --

Fig. 2.9 Pitchfork bifurcation diagram

= "X -Kx 2

o, / N - o0 >

0 < k W = x _x X.,>

<0 x-4 0 3

Fig. 2.10 Phase portraits for the 1D flow (2-21)

c. The Brusselator (a model chemical reaction)

A =A- (B + 1)X + X2y, =BX X 2y, (2-22)

where the phase space point x = (X, Y), X, Y > 0, is in the first quadrant of the plane.
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The sole fixed point is x* =- (X*,y*) =(A, BA- 1).

Df(x )= (B -1 A 2 )

hence the eigenvalues are A± - -A/2 /A 2 /4 - A 2 , where A A2 + 1 - B. We take

A as the variable parameter and hold A # 0 fixed. We see that for A > 0, ReAl < 0; for

A < 0, ReAl > 0. Hence we have the hyperbolic case; and x* is asymptotically stable for

A >0 (B <A 2 + 1), x* is unstable for A <0 (B> A2 +1). A = 0 is the bifurcation
value. We have a new situation here. For B < A2 + 1 we have a single sink (or attractive

fixed point). For B > A2 + 1 this becomes unstable, a source (or repelling fixed point).

What happens to the flow then, since there are no further fixed points to converge to? The
answer is that the flow converges again, but to a one-dimensional set, a. limit cycle, that

is, a periodic criit. See the phase portraits in Fig. 2.11.

* =fixed point

31- 3-

-X X

Y Y

E<2 A> aB=3, A<

Fig. 2.11 Phase portraits for the Brusselator (A=I)

Motivated by these examples, we generalize to the definition: a local bifurcation at the fixed
point x* of the flow f1,(x) occurs when an eigenvalue A of Dfi,(x*) crosses the imaginary
axis in the complex eigenvalue plane. Let it cross at the bifurcation value pb of the
parameter. Then ReA(pb) = 0, and this zero is isolated.

2.7.2 Bifurcation, General Definition

Look at the lphasc portraits in Figs. 2.10 and 2.11. The flows are really "quahi,,tiely

different" before and after the bifurcation. What we mean is that there is no way we can

26



conjinuously deform one tow into tie other. This is the key idea, bringing in the Potion
(2-17) of topological equivalence.

Def. The parameter value pb of the flowi = fp,(x) is called a
bifurcation vdue if the flow is not struturally stable at p - p.
This means that there exist. ar:;itrarilv small perturbations bf(x),
62f(x) of fp,(x) such that the perturbed flow i =- f,(x) + bif(x) is
not topologically equivalent to the perturbed flow"i = f,,(z) + b2f(x). (2- 23)

This is still not completely unambiguous, since the nature of these perturbations must
be spelled out (see GH, definitions 1.7.1 and 1.7.4), but will suffice for us. Clearly this
is what happened in the local bifurcations of section 2.7.1. The small perturbations bif
and 62f were generated by changing -he parameter 1L itself to values slightly above and
slightly below the bifurcation value pb- Later we shall meet 9lobal bifurcations, whose
modification of the flow is not confined to the neighborhood of any point in phase space,
that is, "extends to infinity."

The notion of structural stability of a flow is a very useful one in nonlinear dynamics. For
example, if we know that a flow is structurally stable at a value it, we can change IL slightly
and be sure that the phase portrait is roughly the same, has not suffered any catastrophic,
qualitative changes.

Ex. 2.4 Find fixed points, their stability, and bifurcation values (if any) for the
following real 1D flows. Draw the bifurcation diagrams. The real parameter p can be
positive, negative, or zero.

a) f,(x) - t- x 2

b) f,(X) -LX- X 2

c) f,,(x) = / 2 X - X3

d) f,,() = 1=2 + X3

2.8 Dissipative Flows and Attractors

Consider an autonomous flow i = f(x) in 3N . The system is called dissipative in U C RN

if V.f 2L _ < 0 there. For f(x) is the velocity field of the flow in phase space, so that
negative divergence implies that comoving volume elements are shrinking in time. Hence
a nonzero volume of RN asymptotically shrinks to volume 0 under the flow. This fact,
that flows which initially occupy high-dimensional manifolds eventually end up on very
low-dimensional manifolds for dissipative flows, is one of the characteristic and simplifying
properties of these nonlinear flows. Such final sets are called attracting sets or attractors.
We can make this precise by

Def. A closed and invariant set A is called an attracting set
if 3 a neighborhood V of A such that Ot(x) E V for t > 0
and O,(x) --, A, t -+ +oo,for all x E V. (2-24)
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One can strengthen the definition by requiring some extra properties such as indecompos-
ability (A contains a dense orbit), generalized dimension in some range, %chaotic" flow,
etc.-, and call such sets attractors or strange attractors. Wre shall not try to be too precise
here because there is not yet universal agreement on these definitions in the literature.

Examples of attractors are attractive fixed points and limit cycles. Remember the
definition of the former in (2-13b). The notion of the convergence of an orbit to a set
A such as a limit cycle, which occurs in the definition (2-24), is no more complicated than
the usual "e, 6P definition of convergence to a point; one must only use the distance of the
orbit point i(z) from the (closed) set A rather than the more familiar distance from a
point X.

Such attractors have "volumes" (that is, Lebesgue measure) in 32' = 0, and thus ordinary
dimension an integer _ N-1, when they are not too pathological to be assigned an ordinary
dimension. For example, an attracting fixed point has dimension 0; an attracting limit
cycle, dimension 1. But generalized, nonintegral dimension, such as Hausdorff dimension
HD, may be assigned to any point set in RN . Sets with zero volume may have HD any real
number between 0 and N. For details, see for example, Young (1983). In fact, requiring
N - 1 < HD(A) < N is a popular criterion that the attractor A be strange.

As we saw in section 2.1, orbits do not intersect. This must naturally have some
consequences in the cramped phase spaces of one or two dimensions. Such theorems
are called generally "no-pass" theorems. They are too technical to quote in this report;
the reader is referred to GH, section 1.8, or to Wiggins (1990, section 1.1.1) for details.
But the general moral of these theorems is that 1D and 2D flows cannot be "chaotic." It
is generally agreed that phase space dimension N > 3 is necessary for "chaos." Ve remind
the reader that "chaos" is to be understood as explained in chapter 1; a precise definition
will be suggested later.
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3. DISCRETE TIME SYSTEMS: ITERATION OF MAPS

3.1 Iteration of Maps

Consider a function, or map, F mapping RN into &N which is continuous with continuous
first derivatives. We write F : RN _ XN, F E C1. It determines a dynamics in which
"time" is discrete by iteration, namely

X=+ - F(x,), n = integer. (3- 1)

We shall occasionally call the map dynamics (3-1) a casade. Thus the nth point of the
orbit in terms of the initial point x0 is

n times

xt = F"(xo), where Fn(xo) = F o F oFo ... o F(xo)

- F(F(F(... F(xo)...))), F0 (xo) xo. (3-2)

The symbol F o G denotes functional composition F o G(x) F(G(x)) (don't confuse Fi,
the nth iterate, with the nth power).

Note that Fn'(xo) = F'(Xn- )Fn-I'(xo), where prime means derivative, by the chain rule
of differentiation, if the phase space is R. By induction,

Fn'(xo) = F'(X,-I)F'(Xn-2)... F'(xo) (Chain Rule). (3-3)

In the case of RN, replace F' = dF/dx and F "' by DF and DF n , the Jacobian matrices
(2-10), and (3-3) implies matrix multiplication.

Again, orbits do not intersect under certain lenient conditions, cf. the theorem (2-2) for
flows. If F has an inverse F -1 which is CI, the orbit based at x0 is the set (3-1) for
-oo < n < oo ; if F is, however, noninvertible, (3-1) with n = 0,1, 2,.-- is the orbit. In
(3-2) and (3-3) n was tacitly taken positive.

3.2 Linear Stability Analysis

3.2.1 Linear Maps

If F(x) = Ax, A = N x N real matrix, the map is linear. If we can diagonalize A, we
define the unstable, stable, and center subspaces by dividing the eigcnvectors into the three
subsets

{ULI,U 2 , . UN,} such that lAdj > 1,

{V1,V2,'"VN.} suchthat ijAj<1, (3-4)

{wI,w 2 ,...WN,} suchthat l. i= 1,

with Nu + N 8 + Nc = N. E"t, IE, E c are invariant, and vectors based in them blow up,
decay, or vary "algebraically" in length respectively as n -* +00. For now the explicit
orbit solution is x,, = Anx 0 . Hence for xo = E c. ej belonging to one of these subspaces,

= A ZEcj ej = Z 'ej, (3-5)
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from which both assertions follow.

Again, the general case A not diagonalizable is not essentially different. See appendix A.

Exs. 3.1 and 3.2. 0ome as Exs. 2.1 and 2.2, but let the given matrices A dcfine

linear ?iap, dynamics.

3.2.2 Nonlinear Maps

Again, we can use the linear stability analysis for linear maps by linearizing about a fixed

point x* of the map F : F(x*) = x*. Set xo = x* + u, Ilull small, and x. = x* + un.
Substituting into (3-2), expanding, and keeping only terms up to O(u), we get

Xn = Fn(x* +u) ,t Fn(x*)+ DFn(x*)u = x* +[DF(x*)]nu =' un = [DF(x*)]nu. (3 - 6)

We used Fn(x*) = x* and DFn(X*) = [DF(x*)]n from the chain rule (3-3), since xo =

XI = X2... = X,-1 = X" for a fixed point. But (3-6) is just the orbit for the linear flow
with A = DF(x*). So the linear stability analysis for the fixed point is performed just as
in section 3.2.1.

3.3 Stability Types of a Fixed Point

These are defined just as in section 2.3 with the changes Ot(xo) -- Fn(Xo), t -+ n.

3.4 Connection of Stability and Linear Stability Analysis

We now call a fixed point of a map F hyperbolic if DF(x*) has no eigenvalue A with
JI = 1, or if EC = 0. Sources and saddle points are defined by the same language as in
section 2.4 where now, of course, the invariant subspaces are identified by (3-4). For x*
hyperbolic there exists a homeomorphism mapping the orbits of the nonlinear map onto
those of the linearized map in some neighborhood of x* and preserving their sense. Thus
in the hyperbolic case the linearization determines the stability type, and we get the same
two cases: x* is asymptotically stable (a sink) iff only Es 5 0; it is unstable (a source
or saddle point) iff Eu 5 0. Again, if E c is not 0, linear stability does not in general
determine the stability type of x*.

3.5 Topological Equivalence of Map Dynamics

Given two cascades (map dynamics) defined by F(x), x E X, and G(y), y E Y,

Def. The F-cascade and G-cascade are topologically equivalent iff
there exists a homeomorphism h : X --+ Y such that h o F = G o h. (3 - 7)

This is simpler than the definition (2-17) for a flow. This guarantees that every orbit of F
is mapped into one of G in a continuous manner, and vice-versa. The F-cascade can be
continuously deformed into the G-cascade and vice-versa: they are not really di&erent from
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a topological point of view. In particular, the nonlinear cascade is topologically equivalent

to the linearized cascade around a hyperbolic fixed point.

3.6 Stable and Unstable Manifolds of a Fixed Point

These are defined by exactly the same language as those for flows, section 2.6, with the

substitutions Ot(x) --+ F"(x) and t -4 n. The Stable Manifold theorem reads the same.

N.B.; W' and Wu for a map are manifolds ("continuous" sets like curves, surfaces, volumes,

etc., or technically: locally just like RM for 1 < M < N) even though the orbits are discrete

point sets. This, of course, is because we can start this hopping orbit anywhere in phase

space C R'. W- and Wu for maps have the same properties as those detailed in section

2.6.1 for flows. But notice an important difference. A nonempty intersection W, nl W"

for flows which is not a fixed point must be at least 1D since they must intersect in whole

orbits, which are 1D manifolds (curves). However, a nonempty W s fl Wu for a map can

be OD, a point q which is not a fixed point, as depicted in Fig. 3.1.

-" "- - wS(x*)

q
-V

L \*

Fig. 3.1 Transverse homoclinic point q.

Let us study this situation a little more because of its great importance in the subject of
"chaos." We consider an orientation preserving map F, in R'? for simplicity, with hyperbolic

fixed point x* whose stable and unstable manifold curves W-q and 1W1u intersect transversely

in a nonfixed point q (Fig. 3.1). Such a q is called a transverse homoclinic point (to x*
understood). Consider the orbit based at q,

I- - ., ,F-(q),F-1 (q), q, F(q),F P(q),. } (3-8)

Then since q Ew, Wu and these manifolds are both invariant, the infinite sct of points

(3-8) mnust also lie in both WVs and Wu. Therefore I,' and WVu must wind between each
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other (must be "interleaved") in a complicated way, intersecting at Ieast in the infinite point

set (3-8). These intersections get closer and closer without limit because F" (q) - r* aId

F"(q) -+ x* as n - +oo by the very definition of TV and W", respectively. Such ail

orbit (3-8) is called a transverse homoclinic orbit, and the complicated geometry of the

interleaved, infinitely often intersecting W and W1 is named a homoclinic tangle. So Fig.

3.1 leads inevitably to Fig. 3.2.

/ /

Fig. 3.2 Homocli'nic tangle

It can be proved that the map dynamics is chaotic in a well-defined sense in a neighborhood

of any transverse homoclinic point, (see Wiggins, 1990, section 4.4, top p. 471). We will

return to this notion of chaos in Chap. 5.

3.7 Periodic Orbits

If we have a point x0 such that F"(xo) = xo but Fm(xo) y xo, m < n, we see that the n

points
X1 = F(xo), X2 = F(xi),. ,x,, = F(x,,-i) = xo

form a periodic orbit of period n (or n - cycle, or fixed point of order n). Each xi is a fixed

point of Fn : Fn(xi) = xi, i = 0,1,... ,n- 1. The stability of the n-cycle can thus be

discussed in terms of the stability of the fixed points of the map Fn, a subject which we

have already covered, and is fully equivalent to it. Note that

DFn(xi) = DF(xo)DF(xi). .. DF(x,-i), i=0,1,...,n- 1,

by the chain rule (3-3) for RN, so every fixed point of F" belonging to an n-cycle has

the same Jacobian matrix. So we end up with the characterization of the stability of

an n-cycle in the hyperbolic case (no eigenvalue A of DF"(xo) with IA! = 1): the n-cycle
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is asymptotically stable (an attractive n-cycle) if all JI < 1; it is unstable (a repelling or
saddle n-cycle) if some JAI > 1. For the notion- of convergence of an orbit to an attractive
periodic orbit -: F"(xo) -- , n - +oo, see the remarks in section 2.8.

3.8 Bifurcation of Maps

The motivating discussion of subsection 2.7.1 for flows applies here too. So it is clear that
the analogue of the definition given there is: there is a local bifurcation of the map F at
the fixed point x* when an eigenvalue A of DF,(x*) crosses the unit circle in the complex
eigenvalue plane. If it crosses at the bifurcation value jzb of the parameter, then IA(isb)l = 1
and this value is isolated. The same statement applies for local bifurcations near periodic
points with the substitution of F' for F.

The definition of structural stability and of a general bifurcation for a map is the strict ana-
logue of (2-23), with the cascade Xn+1 = F,(x,) replacing the flow and the perturbations
61F(x), 62F(x) of F,,(x) replacing the perturbations of fPb(X).

Ex. 3.3 Find fixed points, their stability, and bifurcation values (if any) for the
following real cascades. Draw the bifurcation diagrams.

a)F,,(x) j, t- X2, p' E R.

b)F,,(x) -x(1 - x), 0 < p < 4.

c)(x,y) - (y, -x/2 + ipy - y'), y > 0. This is a cascade in R2.

3.9 One-Dimensional Maps

For ID maps there are special techniques available: we mention in particular the graphical
technique for plotting the phase portraits. In the xy plane draw the graph of the curve
y = F(x) and the diagonal line d : y = x. Then an algorithm for constructing the orbit
is to draw the steps bounded by the line d and the graph y = F(x) as illustrated in Fig.
3.3. The projections of the points at which the steps meet the graph onto the x-axis then
obviously give the orbit x,F(x),F 2 (x),....

The intersections of the graph and the diagonal line d give the fixed points of the map. If
F" instead of F is plotted, these intersection points give the fixed points of order n, that is,
the points of the n-cycles. Fig. 3.3 shows the behavior of orbits near attractive or repelling
fixed points. Specializing the criterion of section 3.4 to N = 1, we have A = dF(x*)Idx;
and x* is attracting if JAI < 1, repelling if IAI > 1. But since A is geometrically the
slope of the graph at x*, we can determine the stability of a fixed point (or of an n-cycle)
visually by noting whether the slope of the graph at the fixed point (or fixed point of Fn)
is less than or greater than unity in magnitude. This can be seen in the figure, where the
influence of Sgn A on the orbit is also evident. Also shown is the case A = 0, where for this
particular map the orbit actually converges to x*, though, as we remember, linear stability
analysis is powerless in this case.
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Fig. 3.3 Graphical method illustrated. Top: attractive fixed points; bottom: repellig
fixed points.

310 The Logistic Map

We illustrate some of these topics, in particular bifurcation, on a famous and well-stUdied
ID iniap

See Bai-Lin (1984, section 14), Feigenbaum (1978). For the shown parameter range F maps
the unit interval into itself, so that we can restrict our phase space to 0 < x _< 1. It is
marvelous that such a simple-looking dynamics (one-dimensional, only a quadratic map!)
has revealed an incredibly rich pattern of stability regimes, including "chaos," various parts

of which show up in real nonlinear physical systems of the greatest complexity.

3.10.1 Period-Doubling

The fixed points of (3-9) are x = 0, x = (p- 1)/p. The eigenvalue A = F,(X*) =

11 - 2x*), so A1  p, A2 = 2 - p. Hence, in 0 < p < 1, x* is stable, r* V phase space.
(In section 3.10 let "stable" be short for asymptotically stable, since we shall discuss the
stability type only for hyperbolic regimes.) In 1 < p < 3, x* is unstable and x* is stable.
Thus it = 1 is the first local) bifurcation value. That is, at it, = 1 both JAI I and IA21

passed through 1; x* lost stability and x* gained stability.

At / = 3, x* = 2/3 has A2 = -1, so x* becomes unstable as y increases through 3. So
Y2 = 3 is the second (local) bifurcation value. Since there are no further fixed points of
F,, what happens? You can check that F 2 develops two new real fixed points xo, xI, E
phase space, that is, which are not fixed points of F.. For jp 3.04, slightly greater than
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92 = 3, xo = 0.5984... and x, z 0.7306.... Thus we have a 2-cycle. It is a stable 2-cycle
because

If2'(xo)j = IF2'(x)I = IF,(xo)F;(xt)l = [121(1 - 2xo)(1 - 2xi)
/12 x 0.0908,< 1 in t12 < P < Y3 for some /13.

Here is the first example of a period-doubling bifurcation, here from a stable orbit of
period 1 = 20 to a stable orbit of period 2 = 21. Now continue to increase p; at p3 =
1 + V6 - 3.4495... the 2-cycle loses stability and a 4 = 22 -cycle gains stability. Namely,
F4 develops four new fixed points yj - not fixed points of F,, F2., or F, - and these are
stable: lF.'(yj)I < 1, j = 0,1,2,3, while IF'() > 1, i = 0,1, in P3 < < #4 for
some /14. This is the second period-doubling bifurcation, from a stable 21 -cycle to a stable
22-cycle.

As p increases still further, there is a period-doubling cascade ("cascade" is here used in
the usual sense, not as short for "map dynamics."): stable 2n-cycle -- stable 2n+i-cycle
as n --* +oo. It can be shown that the corresponding bifurcation values Itn+2 --+ /Io
3.5699.... We can display this on a bifurcation diagram in which only the stable 2n-cycles
are shown (Fig. 3.4).

stablefixed
points

of
orders

2n

0 I I I I

8 1 3 3.45 3.57 4
J YZ 1P3  VO Y

Fig. 3.4 Partial bifurcation diagram for the logistic map (not to scale)

Fig. 3.4 ends at yoo. We postpone the complete bifurcation diagram until we discuss a
few more topics.

Consider now the ratio of successive parameter intervals between period-doubling bifurca-
tions. The limiting ratio

_ lim "i - / i ;z,, 4.6692016091... (3 - 10)
n--,oYn+l - An
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does eist, so these parameter intervals decrease asymptotically as a geometric sequence.
The ratio 6 is a universal number in the sense that it turns up in many, diverse -hysical
phenomena Which show period-doubling behavior. See, for example, Chapter 8. Since the
convergence is rapid, (3-10) can be used to predict pn+1, given p,. and p/-, with fair
accuracy. For exampdle,

4 ;:t Y3 + 6'- (ps - /2) ; 3.45 + (3.45 - 3)/4.67 ;- 3.55,

which is correct to two decimal places.

3.10.2 Graphical Treatment of Period-Doubling

The graphical method of section 3.9 can be applied to elucidate the ftindamental ge-
omet rical reasbn for the period-doubling phenomenon. This adumbrates the ideas of
self-simiiatity, renormalization group, and fractals.

Consider first Fig. 3.5. We can literally see how the stability of the fixed points of F,, and
F2 changes as U is increased from 0 to 3.

F F 2

I 1.

sloPe +1*

01/21/2

SJJ3..... 1<p<3

Fig. 3.5 Bifurcations of the logistic map by the graphical method

The behavior described in subsection 3.10.1 can be read off from the slopes of the respective
functions at their intersections with the diagonal. The zero fixed point of F, is at first
stable. At y = 1 it goes unstable while the new, nonzero fixed point gains stability for the
range 1 </y < 3. In the range 0 < p < 3 these are the only fixed points of F. in phase
space, and they have the same stability for F2 as for F. Fig. 3.6 shows what happens for
3 < M < 93 ; 3.45. The iterated map F suddenly gains two new fixed points at p = 3.
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They are stable, and correspond to the stable 2-cycle of F shown. The steps, constructed
by the graphical algorithm, close on themselves, the mark of a periodic orbit.

/

/

I - F
i-F2

/ I • stable
F / o unstable

7 /- X =stable 2-cycle of F

3/ (<13.45 xP.

Fig. 3.6 Unstable fixed point and stable 2-cycle of F.

For f around P3 we get the situation of Fig. 3.7. The new fixed points of F2 of Fig. 3.6
go unstable at y = p3, while two stable 2-cycles of .2 develop at the same time. The
latter correspond to four new fixed points of F4 which are stable. They also correspond
to a stable 4-cycle of F.. Thus history repeats itself; we can see the geometric origin of
the period-doubling cascade.

Note the similarity of the graphs of F and F in the neighborhood of unstable fixed points
and stable 2-cycles for each graph, that is, compare Figs. 3.6 and 3.7. Take the regions V2,
V2 enclosed by the dotted squares to the right and left of x = 1/2 in Fig. 3.7. If we magnify
V2 by a certain factor a and translate it to coincide with the region V in the dotted square
of Fig. 3.6, the graphs of F2 and F. practically coincide for the appropriate p and/j.

The same is true for V2 after an inversion in the point (x, y) = (1/2,1/2). And similarly
for all further period-doublings. The magnification factor a quickly approaches another
universal pure number. Thus a graph displaying all FAI", n = 0,1, 2,3,..., together, for
appropriate parameter values , in the ranges 1n+1 < /n < ttn+2, shows self-similarity
on all length scales. Such a set is called a fractal.

3.10.3 Tangent Bifurcations

We have seen that the slope of F at one of its fixed points decreases through -1 at

9 = 11n+2, a period-doubling bifurcation. This is a pitchfork bifurcation for F (Fig.
3.8).

There is another very important local bifurcation for the logistic map, the tangent
bifurcation, which leads to intermittent behavior. Intermittency is defined generally as

37



i / ;

'>\ :' / p (V3

-' " stable
I 0 unstable

- x stable 2-cycle
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X

Fig. 3M7 Bifurcation of the iterated logistic map F2 by the graphical method

x*_, stable
- ---------- unstable

table fixed pt. x* stable fixed pts

of F, 2

Pn+2 unstable fixed pt. x* of F 2

Fig. 38 Period-doubling bifurcation for the logistic map: a pitchfork bifurcation of F,"
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regular behavior interrupted by random bursts of "chaotic" behavior. We can illustrate it
on the simple 1D map

G (x) + x - x 2

for x and p around zero (Fig. 3.9).

For y ' 0, there is a narrow neck between the graph of G. and the diagonal line. The
orbit point spends a long time in this neck and is apparently converging to the false fixed
point x = 0. Once out of the neck, there may be "chaotic" behavior in the general system
which shows intermittency until the orbit point falls "by chance" into the entrance to the
neck again, and the regular behavior repeats. As i increases through 0, the bifurcation
value for the model G,, the intermittent regime disappears, and a pair of fixed points, one
stable, one unstable, is born (Fig. 3.10).

This happens in the parameter regime yo. < p < 4 for the logistic map (3-9); pairs of m-
cycles of odd order m = k2n, k = odd integer, are born, preceded by intermittency. Thus
we are saying that for p around one of these tangent bifurcation values Ab, the dynamics
of the logistic map F. or one of its iterates Fm is topologically equivalent to the dynamics
of the model map GM, p ; 0, in sufficiently small neighborhoods X or Xm of phase space
[0,1].

The full bifurcation diagram of the logistic map in 0 < y :5 4 is shown in Fig. 3.11.

We have explored only part of the stability structure of the regime (p' 0 , 4] here; for more
details see the cited specialized works.

However, one further feature of this regime should be mentioned here: it is the "chaotic"
regime in the sense that the Lyapunov exponent X > 0. (We have already seen this for the
single value p = 4 in section 1.3.)

W. ,(X) Wx

y=x=

I -X XX

•9 = stable

4 =unstable

Fig. 3.9 Tangent bifurcation by the graphical method
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stable
- -- - -unstable

stableJd fixed point x*
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of C

untol fixed point x

of G,

Fig. 3.10 Tangent bifurcation diagram

A

y .

C

03.8~i PiP3 i.4.

Fig. 3.11 Full bifurcation diagram for the logistic map

3.10.4 Lyapunov Exponent for 1D Maps

Let x,, = Fn(xo) be an orbit of a ID map F. For an initially nearb~y orbit wc have

X0= X0 + C, 6 small. Then
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e=ZU X 1tz.r F(zO)e flF(xj)
j=0

by the chain rule (3-3). Take absolute value, write [e,,[ - ex-t ei, take the natural
logarithm, and divide by n. This defines x,- Then we have the definition

" =-JmX im in nlF(xj)l. (3-11)
X nlimOx - n-oo ni=

If this limit exists, X is called the £yapunov mzponent (LE) of the orbit based at zo. This
can be gencralized to maps and flows in 3V and even beyond phase spaces C -'2, but the
generalization is not trivial. We postpone this to Chap. 5.

You see that X is the average of the linearization growth exponent In IF1(x) along the
orbit. In fact, if x0 is a fixed point x*, then X = In IAI = In F(x)I, and is > 0, = 0, or
< 0 according as JAI> 1, = 1, or < 1. If x > 0 for a general orbit, then it is diverging
(initially!) at an exponential rate from any orbit which is sufficiently dose to it at some
time n. This is a popular signature of sensitive dependence (SD) in the physics literature.
Note also that the LE of a stable n-cycle < 0 (Ex. 3.4).

Ex. 3.4 Prove that X < 0 for an (asymptotically) stable fixed point or periodic orbit.

Prob. 3.1 For the logistic- map (3-9) and specific parameter values p = 1.5, 3.1,
3.5, 3.5699, 3.6, 3.828, and 4, use a microcomputer or programmable calculator to do the
following:

a. Plot the orbit -,or each A for a typical initial value x0 , 0 < xo < 1, and a
sufficiently large number n of iterates.

b. Try to guess the stability types of whatever attractors, if any, exist. (Hint: it
is essential that you plot the orbits, not just list the points in a computer printout, so as
to be able to identify the asymptotic [large n, after transients die out] behavior "by eye.")
For example, "stable 3-cycle" might be an answer here.

c. Calculate the LE X of each of these orbits, and try to correlate X with the
observed stability type.

3.11 Poincarg Maps

A Poincare map of a flow is one of the most valuable tools for studying flows in nonlinear
dynamics. It reduces the dimension of the phase space by at least 1; it reduces continuous
orbits to discrete orbits (easier to compute); nevertheless, it gives a complete and equivalent
picture of the stability or "chaotic" behavior in sufficiently small neighborhoods.

A Poincard map is commonly used to study flows in three situations:

* To study the stability of periodic orbits (limit cycles).
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e To study time-periodic flows. These are nonautonomous flows such that f(xt) =
f(x,t + T) for some T, all x E RN. These usually arise from periodic forcing terms in
motion equations.

* To study the flow near a hmocinic or heteroclinic orbiL These are orbits whid
join a hyperbolic fixed point z" to itself, or which join two hylperlfic fixl points ar-. x,
respectively. Such an orbit must therefore lie in the intersection w fl W3 , where both
manifolds belong to z* in the homodinic case, or one belongs to x4, the other to x*, in
the heteroclinic case. Such orbits are not usually structurally stable, so any slight change
of the parameter breaks them in two. "Chaotic" flow then ensues.

The subject of Poincar6 maps is a huge, mathematically deep one. We will only sketch the
kq idea here, and assign an illuminating problem. For the theory, see GH section 1.5, or
Wiggins (1990, section 1.2) for the basics. Most of their succeeding chapters use Poincar6
maps as an essential tool.

Consider the application (1) above. Let a flow i = f(x) in RtN with orbit function now
written (t,x) have a periodic orbit of period T. We pass an (N - 1)-dimensional surface
E through the flow, cutting -y transversely at xO. Take a smaller open set V C E which
contains x0 - Then if V and E are small enough, the orbits which pass through V will
intersect E when they come around again, in a time close to T. The map that associates
points in V with their points of first return in E is called the Poincare map; call it P.
Then more precisely,

P: V - E by x -1 1O((X),x), (3-12)

where T(x) is the time of the first return of x to D. Note 7-(xo) = T and q(T, xO) = xO.
Thus P maps xo into xo; x0 is a fixed point of the Poincare map. E is called a cross section
of the flow f. Figure 3.12 will make all of this clear.

Fig. 3.12 Illustrating the Poincar6 map
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Practically speaking, one must have a pretty good idea of the flow phase portrait before
being able to choose a cross section intelligently. However, the .choice of a particular r.
satisfying the definition above is not too critical, because any two such maps, P and P',
are topologically equivalent!

Now consider application (2) above. The nonautonomous flow is i = f(x, t), and obeys
f(X,t + T) = f(x,t) for all x. Let Ot(xo) be the orbit function, with q0(xo) = x0 . Then
define the map P by

P(xo) -T(xo), allxoE ?N. (3-13)

That is, we simply sample the flow at times nT, n = 0, ±1, ±2, ±3,.-., to define the
map orbit. For note P"(xo) = 0,lT(XO)- (Of course, this map can be used for autonomous
flows as well.) Unlike case (1), P need not have a fixed point. If it does, say P(x*) = x*,
then x* corresponds to a periodic orbit of period T for the flow. A fixed point of order
n Pn(x*) = X* corresponds to a subharmonic of the flow of period nT.

The map (3-13) is really of the Poincar6 type, as you can see by making the flow
autonomous by writing :i = f(z, 0), i = 1; then the cross section E is the N-dimensional
surface 0 = 0 cutting the flow transversely in the enlarged phase space RN x S 1, where
S 1 is the unit circle (that is, 0 is an angle and measured mod 27r). Then the time of first
return r(x) = T is the same for all x E RN = V = E.

Prob. 3.2 Consider the harmonically forced, damped, Duffing oscillator

i+ i-x+x 3 =-Ycoswt, 6>0. (3-14)

This problem is to be done a programmable computer with graphics display. Take 6 and
w fixed, say 6 = 0 or 0.25 and w = 1, and consider -1 variable, 0 < 7 < 1.

a. Unforced case - = 0. Put (3-14) into autonomous flow form in R2. Find the
fixed points, their invariant subspaces EU, E", Ec, plot a phase portrait which indicates
also the invariant manifolds W-, W" of each fixed point. Do this for 6 = 0 and .25.

b. Now let 7 be nonzero: consider the cases 7 = 0.20, 0.30, 0.40, all with 6 = .25.
Use the Poincare map P., (3 - 13) with T =_ 2r/w = 27r. Numerically plot Ws and Wu
for the saddle fixed point of P. near (0, 0).

Remarks and hints on Prob. 3.2: This is a fairly ambitious problem. Part (a) can be
done more or less analytically with good intuition. As to part (b), luckily the map P, is
structurally stable (section 3.8) at 7 = 0, and so it continues to have three hyperbolic fixed
points near those of part (a) for small 7. To plot W* and Wu numerically for the saddle
point x*, determine the directions E' and E u and then iterate a number of initial points
on these directions close to x*. (Remember that W3 and E-, Wu and Eu are tangent
at the fixed point by the Stable Manifold theorem, see section 3.6!) To get W-, iterate
P-1; to get Wu, iterate P.,. There is a (global) bifurcation somewhere between y = 0.10
and 0.20. You will find a transverse homoclinic orbit (section 3.6) developing when WS
and Wu intersect transversely, thus "chaotic" motion. For y large, - 0.40 or greater, the
graphics should reveal what appears to be a strange attractor (see section 2.8; an obvious
analogous definition holds for maps). It apparently coincides with Wu. You may want to
compare your results with GH, section 2.2.
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4. HAMILTONIAN SYSTEMS

4.1 Generalities

The flow
= OHlp, ,9=H-H/Oq, qp E R (4-1)

in RN, N = 2n, is a Hamiltonian system of n degrees of freedom. H H(q,p,t) is

called the Hamiltonian. If H does not explicitly depend on t, the flow is autonomous, and
H(q(t),p(t)) is a constant (or integral) of the motion. In other words, H is conserved. For
we can easily prove, using the motion equations (4-1), that

dH/dt i OH/Ot, (4-2)

which equals zero in the autonomous case. Then the flow is confined to the (2n - 1)-
dimensional energy surfaces H(q, p) = const. in phase space.

Hamiltonian flows conserve volume in phase space, and are nondissipative, since V . f = 0.
Let us check this:

2n n [ a (OH\ Of-OH\1

k+1 i=-- a0, (4-3)

whether or not H depends on t. Hence they can have no low-dimensional attractors of
the dissipative type, where an initial nonzero volume in phase space ;hrinks in time to
zero vo!ume (section 2.8). Hamiltonian flows are usually considered more fundamental
than dissipative flows, since microscopic physical motion equations like (4-1) possess time-
reversal invariance while dissipative flows do not. (Note the dissipative term +&i in the
damped Duffing oscillator (3-14), for example.) Dissipative systems in RN are truncated
models of T-invariant systems in a larger phase space RN', N' >> N, where the interaction
between parts of the larger system is modelled as dissipative terms in a smaller system.

As for the question of stability, note that all stable fixed points of (4-1) must be centers
(the asymptotically stable, or sink, case is excluded). Refer to section 2.3 to recall these
definitions. We can see this as follows. Consider a stable fixed point x*.

0=V.ff -(Eafk/OXk) =Tr Df(x*)=
k *

N

=ZAk 4: E ReAk =0. (4-4)
k k=1

Here the {Akl are the eigenvalues of the Jacobian matrix at the fixed point. But if x*
is stable, no ReAk > 0 (this seems evident, and can be proved). Therefore no ReAk < 0
from (4-4), since the real parts must add to zero! Thus all ReAk = 0, k = 1,2,. .*N. This
says that Eu = Es = 0; only EC # 0. Then it can further be proved that this guarantees
that x* is in fact a center for most ("typical," "nonpathological") Hamiltonians. One
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says: "under generic conditions." So from now on we assume that all fixed points of a

Hamiltonian system are either centers or saddles.

Examples. A simple, important, autonomous Hamiltonian system for n = 1 is the linear

harmonic oscillator H(q,p) = (p 2 + q2 )/2, in properly scaled variables. There is one fixed

point (0,0), a center, and all orbits are periodic with the same period 7- - 27r/w, where

w = V/7 = 1 here.

A separatrix is a branch of Wu(p) or WS(p) for a hyperbolic fixed point p (Fig. 4.1).

separatrices of p

Fig. 4.1 Two cases of separatrices

The general definition of hyperbolic fixed point was given in section 2.4; for a Hamiltonian
system there is only one possibility: p is a saddle - the source and sink cases are out.
The harmonic oscillator has no separatrices since it has no saddles. However, another,
all-important example of an n = 1 Hamiltonian system does have separatrices. This is the
1D pendulum (Fig. 4.2):

9=p, p=-asin9;H(9,p) =p2 /2-acosO. (4-5)

Phase space here is actually R x S 1, rI = unit circle, since 0 is an angle, measured rood 2r.
Thus, topologically it is the surface of a cylinder rather than the plane R2. The differmut

fixed points are two, (0, 0), a center, and (7r, 0), a saddle. For (-7r, 0) ;s to be identified
with (7r, 0), and (7r, 7r) with (0, 0), etc. The phase portrait looks like Fig. 4.3.

Note the two separatrices, so-called because they separate regions of qualitatively different
orbits. Inside them the orbits are closed, going from approximately circular harmonic
oscillator orbits near the center to distorted limit cycles whose periods -4 oo as they
approach the separatrices. (Why is this obvious?) This type of periodic motion is called

45



jO9

Fig. 4.2 The 1D pendulum

- --

- - - --- separatrices
X saddle

Fig. 4.3 Phase portrait for the 1D pendulum

libration (def. the orbit is closed in phase space). Outside the separatrices the orbits areopen curves. This type of motion is called rotation (def. p(q) is a periodic function). Sothe harmonic oscillator shows only libration, while the pendulum shows both libration androtation. The geometric significance of these two is obvious. The pendulum librates wlien
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its energy is low enough so that it swings back and forth like the bob of a grandfather
clock. When it has enough energy, it rotates around its pivot. The stable fixed point is
the pendulum hanging straight down, the unstable fixed point is the pendulum balanced
straight up. The separatrices are the limiting libration with angular amplitude 7r and
infinite period.

For a good treatment of Hamiltonian systems see Goldstein (1980).

4.2 Integrable Systems

There are three presumably equivalent definitions of an integrable Hamiltonian system.
We give all three, since each one casts a different light on the concept. From now on
we assume an autonomous system with analytic Hamiltonian H(q,p). For real-valued
functions f of real variables x E RN, we have the

Def. f is analytic in a neighborhood V C RN if f(x) admits
a power series expansion in x about every point x0 E V. (4 - 6)

Thus we are assuming that H has a power series expansion in x = (q,p) E R2," except
possibly at some singularities.

Def. 1. The system (4-1) is integrable if the solution curves q0(xo)
= (q(qo,po,t),p(qo,po,t)) are analytic in xo = (qo,po) and in t. (4-7)

This is the most fundamental definition. One can simply integrate the differential equations
(4-1) and get explicit solutions analytic in both initial conditions and in time.

Def. 2. The system (4-1) is integrable if there exist n independent
analytic constants of the motion Fi(q(t), p(t)) = const., i = 1,2,... n. (4- 8)

There is already one constant of the motion, H itself, (see (4-2)). However, there must be
n - 1 further conserved quantities, and all independent (no Fi is a function of the other Fj,
j # i) if the system is to be integrable. These usually arise when the system is not coupled
to external fields, which destroy the symmetry of H under translations or rotations. Then
one gets total linear momentum or total angular momentum, etc., conserved as well as the
energy.

Def. 3. The system (4-1) is integrable if its Hamilton-Jacobi eqtiation
admits a complete solution. (4 - 9)

This is more technical. The H-J equation is the single partial differential equation

H(q, OW/eq) = E = const., (4 - 10)

for Hamilton's characteristic function W. A complete solution of (4-10), W(ql, q2,." qj ;
71, 72,.. "'7), admits n independent integration constants 7. (The energy E can be
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chqsen tp hc one of these.) We explain briefly'how Eq. (4-10) ari es, and refer the r(cdhr
to Goldstein (1980) for details.

Consider an analytical canonical transformation Qi = Qi(q,p), Pi = Pi(q,p), i = 1,2,..n,
with new Hamiltonian defined by K(Q, P) H(q,p), that is, such that the Hamiltonian
form (4-1) is preserved:

Q = OK/oP, P = -g/oQ. (4-11)

What if we could find a canonical transformation such that K did not involve the Qi
K = K(P). Then we could integrate (4-11) immediately and trivially, getting

Pi(t) = -i = consts., Qi(t) = oit + fi ; aO, fli consts., (4- 12)

where aj( ) =-(8K1Pj)I . How would we find such a canonical transformation? If

it were generated by a function W(q, P), we would have

p = OW/oq, Q = ow/oP,

(see Goldstein, 1980). We could get a partial differential equation for W by rewriting
H(qp) = K(7 i) = E = const. as in (4-10). Then it can be shown that a complete solution
of (4-10) guarantees that the canonical transformation (q,p) '-4 (Q,P) can be inverted to
get the solution

qi=qi(at +P,7), p,=pj(at+#,y), ofl,y TER ,

from (4-12). The 2n independent integration constants -ji, Pi can be replaced by the 2n
initial values qoi, poi, and we are back to the explicit analytic solutions demanded by Def.
1, (4-7). This makes a long story short, but I hope that it gives the essential idea without
oversimplifying.

You may well ask why we don't simply solve the H-J equation for the system of interest,
thereby apparently getting explicit orbit solutions and proving any system integrable by
Def. 1. The answer is, a complete solution of the H-J equation does not always exist;
in fact, it is rare (a fact not sufficiently emphasized in our standard classical mechanics
texts). In those cases the system is nonintegrable. A famous example is the Newtonian
3-body problem, which worried Newton and all his successors.

Some simple examples of integrable systems:

a. All 1D systems (n = 1). For, solve for p = q(q) from H(q,p) = E. Substitute this
into the motion equation 4 = OH/Op, getting a first order ordinary differential equation
for q. Integrate.

b. All linear flows. For, go to normal modes (that is, separate the variables), getting
the equations &j + wqi = 0, i = 1, 2,... n. Integrate.
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4.2.1 Action-Angle Variables

Let us consider a special case of an integrable system. First we assume that the H-J
equation is completely separable in some set of canonical coordinates q, p. This means that
it reduces to the n ordinary differential equations

Hi(qi, Wi/8qi) = Ei = consts., where

H =E~ i) E=E (4-13)
i i

Then one gets the solution W - Wi(qi; ae) [a E Rn are some general set of n independent
constants, functions of the separation constants Ei] by quadraturcs (solve the ith ordinary
differential equation in (4-13) for OIVi/Oqi as a function of qi and Ei, and integrate).
Second, we assume that (at least in some energy regimes) the motion is of libration or
rotation type. This means, more precisely, that the projection of the motion on the qi-pi
2-plane for each i = 1, 2,... n, is libration or rotation as defined for the ID pendulum in
section 4.1. We confine attention to these special integrable systems from now on.

Now we can introduce action-angle variables J, 0, a special case of the separable coordinates
of (4-13). Define the actions

fi pidqi Oi(qi;a)dqi = Ji(a), (4-14)

where the integral J is carried out over a complete period of the. libration or rotation.
Inverting (4-14), we can express the ai as functions of J E W". Since K(9, J) -H(q,p) =
E Hi = Zi Ei(a), K is a function K(J) of the J only. Then the canonical motion
equations (4-11) have the simple solutions (4-12). Namely,

=8 /OJi =vi(J) = consts. = Oi(t) = 1;t + /3i

= -OKI900 = 0 Ji(t) = = consts. (4 - 15)

Because of the definition (4-14) of the actions, these particular coordinates have special,
nice properties. We just list them, and refer the interested reader to Goldstein (1980,
Chap. 10) for proofs and details.

a. The vi -OK(J)/8Ji are the frequencies of the libration or rotation.

b. The bounded motion, that is, libration, x(t) = (q(t),p(t)) is quasi-periodic wit.h
the frequencies vi:

x(t) = ajexp[27rij . (vt + f v), i, , P consts. E R". (4 - 16)

Here j - , jivi is the scalar product, j is an integer vector, namely, its n com)onents
are integers, a3 are a set of constant amplitudes in W2n indexed by integer vectors, and the
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sth l1ii (4-i6) gobs over dll integer vectors. We only merition that tl.e inbounded mbti6n
*( 6thtioh) is simiiik, except that it has an extra term q0" (vt + P6) linear in t in q(t).

Pr6pekty (a) hs been 4 boon in celestial mechanics, since one can compute the fundarcnIal
frequencies jtiA by finding K(J), without solving for the complete motion. As for (b),
iiotc that thb notibii is in general not periodic, since the orbits do not close. Only in thc
case that the ireqcuhecies are commensurable,

*" = 0, r-=1,2,.* ..n - 1 (commensurable case) (4 - i7)

for it - 1 linciady iiidependent 'Constant integer vectors jr, do all orbits close. 'this is easy
to see: it mbahs that the ratio of any two frequencies is a rational number. A special case is
that all irecjuencies are integer multiples of some one frequency vo (which need not belong
to the set z'v, .,... vn). Then the orbit (4-16) is a Fourier series in time with fundameital
freqidhcy M6.

Prob. 4.i. Introduce actiori-angle variables and solve for the freqliency v -

Ok(i)/OJ for
a. the linai harmonic oscillator,

b. the 1D pendulum (4-5). You may want to look at Goldstein (1980) for hints.

4.2.2 N-Tori

The moral of Eq. (4-16) is that the bounded motion of integrable systems lies on invariant
n-to'i. For, once we locate an orbit initially in phase space by the 2n numbers q0, P0,
or equivalently, by the 2n numbers 00, Jo, the further position is determined uniquely by
n ahgles Oi(t), (see (4-15)). n-dimensional manifolds Where the point is specified by 71
angles are called n-tori. For instance, a 1-torus is a circle; a 2-torus is the surface of a
doughnut (Fig. 4.4). For n > 3, the n-torus cannot be realized in our physical 3-space,
but is defined similarly. The n actions Ji = Joi, which are constant along the orbit, fix
the particular n-torus on which the orbit lies: this torus is invariant. In the general case
1.1 incommensurable ((4-17) not true), the generic orbit winds up on the torus endlessly
without closing, and is dense there (as seems reasonable, and can be proved). Only in
the commensurable case is every orbit periodic, and therefore not dense on the torus. For
"dense," see below.

But this just means that the dynamics of any such integrable system is topologically
equivalent to the dynamics of n uncoupled ID pendula! Indeed, if we pass 2-surfaces
through the phase space, they cut the flow in distorted copies of the pendulum phase
portrait (Fig. 4.3). This explains the fundamental importance of the pendulum in
Hamiltonian dynamics.

This long and rather abstract dose of theory is justified by the pay-off. First, integrable
systems can never be "chaotic." For the motion is at most quasi-periodic, and this is too
regular for the appellation "chaotic." Secondly, there are implications for the foundations of
statistical mechanics. If the microscopic dynamics of nature were integrable, the necessary
ergodicity assumptions of statistical mechanics could never be valid. For integrable motion
is confined to low-dimensional manifolds, and so could never wander crgodically through
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Fig. 4.4 A 2-torus and an orbit on it

the whole energy surface, sampling all states on it, as required by statistical mechanics.
That is, n < 2n - 1 unless n = 1. For a preliminary definition we can say that an orbit
is ergodic on the energy surface if it is dense there: given any state x E energy surface aE
and any neighborhood V C aE of x no matter how small, the orbit passes through V at
some time (or times).

At this point it is natural to entertain the notion that nonintegrable microscopic dynamics
will save statistical mechanics. Viz., the nice clean integrable Hamiltonians of our
textbooks will be perturbed by realistic interactions into nonintegrable ones. The motion
will then be generically ergodic, energy sharing among the various modes (a mode is one
of the terms in (4-16) characterized by an integer vector j) will take place, equipartition
will set in in equilibrium, etc., and all the properties assumed in statistical mechanics will
follow. To examine this hopeful view we now turn to nonintegrable systems.

4.3 Nonintegrable Systems

A nonintegrable system is simply one which is not integrable. Unfortunately, there is no
simi.le criterion, such that we need only to look at a Hamiltonian to see if it is integrable
or nonintegrable. The only way is to prove that the system violates Definition 1, 2, or
3 of section 4.2. But there is no guarantee that we can do this. Consequently, we often
work with Hamiltonians which we suspect (from numerical work, say) to be nonintegrable,
without being able to prove it.

In this section, we enter an area, called "dynamical systems," on which much research
has been done over many years, unlike most work on nonlinear dynamics, which is
comparatively new. Some deep and powerful theorems have been proved by great
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mathematicians. These results are too technical to give in rigorous form in this report. But
they are so important that they must be included here, even if in nonrigorous, paraphrased
form. My aim, as always in this report, is that the definitions and theorems should make
sense to the reader.

First, we might ask: how many integrable Hamiltonians are there among the set of all
analytic Hamiltonians? The answer is that they are rare, a set of ,icasurc 0 in an
appropriate measure. Nonintegrable Hamiltonians are dense in the set in the same measure.

Second, what is the nature of the flow for a nonintegrable Hamiltonian? The most
important result on this is the famous KAM (Kolmogorov, Arnold, Moser) theorem, see
Arnold (1978), Arnold and Avez (1968), GH (1983, scction 4.8), and Wiggins (1990, pp.
150-153).

4.3.1 KAM Theorem

This can be stated loosely as follows:

KAM Theorem. Given H = H0 + V nonintegrable with H0 integrable
(of separable and rotation-libration type). Introduce action-angle
variables, 0, J for the unperturbed system with Hamiltonian
Ho(J). Assume a) V is "small" in some sense, and b) Ho(J) is
nondegenerate,

O(Jil, J2, . v,) O. Io~jY,-, .)0, = J

where the left hand side is the Jacobian determinant. Then for a
sufficiently irrational set of frequencies v* E R" there exists an
invariant torus T(v*) of the perturbed system H close to the
invariant torus To(v*) of the unperturbed system H0 . (4 - 18)

Remarks. a) Frequencies v* are sufficiently irrational if v*. m is bounded away from zero
for all integer vectors m E R". More precisely,

IV. ", > allmllI (4- 19)

for some fixed a, fP and all m, where IlmII is the length of vector ti. Thus not only can
no integer linear combination of the v* vanish, as in (4-17), but these must actually not
be too small, in the sense of (4-19). b) Sufficiently near a center of H (section 2.3) the
majority of the orbits of H lie on these "preserved" tori, called KAM tori (sometimes
nonresonant, or irrational, tori). This is the principal moral of the KAM theorem. On
perturbing an integrable system into a nonintegrable one, we (o not conplctcly destroy the
regular motion - part of the motion remains confined to low (n)- dimensional manifolds
and quasi-periodic. c) The KAM theorem says nothing about the fate of tori To(v) whose
frequencies are not sufficiently irrational, that is, about the orbits of H which do not lie on
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the preserved tori T(v*). Might the motion in this complement set be "ergodic" in some
sense? See the remarks on statistical mechanics at the end of section 4.2.

4.3.2 Poincar&Birkhoff Theorem

To investigate the dynamics in this complement set we consider the fate of a rational torus
To(vR) of the unperturbed flow, that is, one whose frequencies are commensurable (4-17),
so that any orbit on it is periodic, and closes. We can define a Poincare6 map Po (section
3.11) by cutting this torus transversely by a (2n - 2)-dimensional cross section F lying in
the (2n - 1)-dimensional relevant energy surface H0 = E. Let F cut the torus in the level
curve P. By a simple theorem, every point of r is a fixed point of pn for some fixed 7n; we
choose the minimum such positive integer m. Now turn on the perturbation V; the same
section E will define a Poincar6 map P for the perturbed flow near To(1'R) in the energy
surface H = E. The question is, what happens to To(v), or equivalently, to r?

For a Hamiltonian map F we have det DF(x) = 1 everywhere, the counterpart of V f = 0
for flows, because it conserves volume in phase space. Hence its fixed points of any order,
Ff..(x*) = x*, can be proved to be either centers or saddles in the generic case, cf. the
similar discussion for Hamiltonian flows following (4-4). For a map of R2 the situation
is especially simple. Let DFm(x*) have eigenvalues A1, A2 , which thus satisfy A1A2 = 1.
There are only two possibilities: 0 < A1 < 1 < A2 , or A2 = A*, J~il = 1. The fixed point is
called a hyperbolic point in the first case (saddle point) and an elliptic point in the second
case (center).

At this point we specialize to two degrees of freedom, n = 2. Then we are dealing with
a 3D energy surface, a 2D cross section E, a 2-torus, a 1D P (an ordinary curve), and
Poincare maps P0 and P taking R2 into 32. Now we are ready to state the main theorem
in a paraphrased form. For rigorous statements, see Arnold and Avez (1968), GH (1983,
section 4.8), Wiggins (1990, pp. 137-140).

Poincar6-Birkhoff Theorem. For a sufficiently small perturbation V,
the level curve r "breaks up" into 2km fixed points of P"' for
some integer k. These fixed points lie near F; km are elliptic
and km are hyperbolic. (4 - 20)

This situation is depicted in Fig. 4.5. P is often called a resonant level curve, and a certain
region around P containing the elliptic and hyperbolic points is called a resonance zone.
Also shown are the separatrices joining two adjacent hyperbolic points. If they intersect
transversely in a homoclinic point as shown, this leads to the infinitely complicated set of
intersections known as a homoclinic tangle (or stochastic layer in the physics literature),
which was discussed in section 3.6 for a single fixed point. Incidentally, the integer k is
not predicted by the P-B theorem. For the situation km = 3 of Fig. 4.5, k = 3, m = 1
or k = 1, m = 3. The regions around the elliptic points bounded by the separatrices are
called islands. Figure 4.5 shows an "island chain" of three islands in the case m = 3 or a
set of three "separate" islands in the case m = 1.

Take any elliptic point E of H. In any neighborhood of E there is a resonant torus To(1l')
of H0 (Arnold and Avez, 1968). We have indicated such an elliptic point E with a nearby
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tori) an,& ':chaotic?* motion (in the stochastic layers in the resonance zones) arbitrarily near
any elliptic point, which corresponds, as we remember, to a stable periodic orbit of H.

For the-geccndization to ?L > 2, see the cited works.

4.3.3 Resonauce OveERla

The above discussion of the z.onsequences of the P-B theorem (which Poincax6 himself
found mind-boggling) does not exhaust the complications, the possibilities of even more
"chaos." If V is large enough, the resonance zones may overlap, defined precisely as the
transverse intersection of stable and unstable manifold IV'I(x.) and WVI(xz) for x, and
x.2 hyperbolic points from two different resonance zones- This is illustrated in Fig. 4.6.

Fig. 4.6 Resonance overlap

Then the inescapable argument of section 3.6 implies infinitely many transverse intersec-
tions, thus transverse heieroclinic orbits, and heteroclinic tangles.

There are theories which offer q-uantitative methods for handling this P-B breakup of
resonance zones, in particular, Melnikov's method, (see GH, 1983, sections 4.5 and 4.6 and
Wiggi-s, 1990, section 4.5). For further developments, especially resonance overlap, see
Chirikov (1979).

4.4 Examples of Nonintegrable Systems

Consider first the "double resonance" Hamniltonian

-H = Ho(J1 , J2 ) + fLIM, COS(mOi - nO2 ) + flnn cos(POI - q02) (4 -21)
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inaction augle vhralesJi, 0ji = 1,2; m, nz, p, q are positive intgrs. Forf,,
and g,,., 96 0, H is prcstiuably nonintegrable, and if they arn. siiiall enough, the K(AM
and Poincawi-Birkhoff theorems can be applied. Constructioni Of ;L POinrriii-ap 11 P ;uic
explicit numierical integration reveal the following features (Walker and Foird, 1969).

For low energies £ the phase portrait shows the general appearance of the superposition
of two resonance zones corrc.,ponding to frequencies close to the commensurable onesv

and (7~) satisfying(1 ()0 (2 ()

7n (R) -' -yl 0, ' (2-_qv (2)0. (4-22)

Here the resonant tori To(YR) with frequencies (1) and 1,(2 correspond to the two integrable
Hanuiltonians (4-21) with g,,. = 0 or fin=0 respectively, whose 2-tori can bie plotted
analytically. Most tori are preserved. As B is raised, one sees the breakup of these
resonance zones in accordance with the P-B theorem, the appearance of islands, traces of
homoclinic stochastic layers, etc. For sufficiently high E resonance overlap occurs. One
notes heteroclinic stochastic layers and single -rrbits which seem to wander over the whole
energy surface. The KAM tori disappear.

Consider now the H~non.-Heiles Hamiltonian (H6non and Heics, 1964)

H = W,+ j"22 1 3 2(

This is presumably nonintegrable. A Poincari map was constructed by taking E to be
the section q, = 0, 41 > 0 of the 3D energy surface. The map was plotted numerically for
various E < 1/6, for which the motion is bounded.

In general one sees preserved tori and broken-up resonance zones. In particular, a) E=
1/12. Only 2-tori are seen. b) E = 0.106. One sees several large islands and two smaller
8-island chains. There are signs of a stochastic layer near separatrices. c) E = 0.125.
Some preserved tori. A random splatter of points from a single orbit, possibly ergodic. d)
E = 1/6. No visible 2-tori. Irregular, possibly ergodic orbits. Sec Fig. 4.7.
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5. ?4EA Of CHAPS

'Qhaps" wqs aje;dy introduced in an informal way in Chap.1, where we saw that althpugh
t1'c i. n .C Js s on a rccISe definition yet, three or folr criteri!' are i isi iy eptcd i

the pliysics iterature .s "signatures of chaos." The core idea of "chaos," however, as most
would agree, is sensitive dependence, often abbreviated SD hereafter. We will concentrate
on SD in this chaqper, ad 'treat the other signatures much more briefly.

The meaning pf sensitive dependence (on initialconditions, that is, initial point .r0 in phase
space, ipdrstod hereafter) is the unpredictability of the orbits, even thou. gh the dynamics
is of course a deterministic system. Say we have a system which does possess SD (not all
of them do!) I and we wish to compute the orbit Og(xo) based at x0 . No matter how closely
we itp ,imate xo, it is in principle possible (for certain xo) to make a fixed gross error
in the orbit after spone time t: the calculated orbit bears no resemblance to the true orbit
01(xQ) after this time. The term "unpredictable" seems justified for this property. The
nepp.sity of approximating To is forced upon us by inevitable small errors, by the finite
resolution of pur €ompiuters, etc. This situation will not be cured by an increase of 103

or 100 or ... of ppir supercomputers of the future. Also, it has nothing to do with noise,
errors which arise from perturbations originating outside the system (although noise will
compound the error) - it is an intrinsic property of the deterministic system.

There are two versions of SD current today - the mathematician's and the physicist's,
which, strangely enough, seem to coexist without being aware of each other. The
mathematician's definition focuses on this basic idea of unpredictability, the minimal,
irreducible idea, such that anything weaker would be admitted as regular, predictable
!moti~pn by everybody. It is something very like the familiar idea of the continuity
or discontinuity of functions at a point generalized to apply to whole orbits. The
mathematician's definition does not concern itself with how fast orbits separate, or how
long it takes to make this "fixed, gross error." The physicist's definition on the other hand
requires fast (exponential) separation of orbits in a certain sense; we shall call it exponential
SD This is partly because there is an easy way (in principle) to check this fast SD, namely
by the calculation of Lyapunov exponents. But the main reason, I suspect, is the widely
held belief that exponential SD is necessary to ensure "chaos," since the mathematician's
SD, call it minimal SD, is known to include cases of "trivial SD," where the behavior is
clearly not "chaotic," for example, the free particle. However, this belief is mistaken, as
we shall see. Minimal SD occurs on certain sets in phase space; it is natural to limit these
sets in a certain way. Then minimal SD, so limited, is essentially equivalent to chaos; it
has all the properties that we associate with that term. So chaos can finally be defined this
way. There is no need to mention the rate of divergence of orbits in the definition, and no
reason to believe that all chaotic SD is exponential! The distinction between exponential
and minimal SD is irrelevant, a false distinction, as far as chaos goes.

One advantage of the minimal, over the exponential, definition of SD is that it is easier to
carry out analytic proofs of its presence or absence in some systems, notably QM (quantum
mechanics) systems, in the former than in the latter. If minimal SD can be shown to be
absent, then there is no chaos in that system. Proofs that chaos is absent in a very
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large class of intc.esting observables in QM will be given or indicated in this section or in
appendix B.

A very interesting and apparently open question (July 1990) is whether chaos defined this
way implies the other usually accepted "signatures of chaos."

5.2 Sensitive Dependence

Let x be a point of phase space, or state, of the system. For flows and maps whose phase
space C RN, a state is the real N-tuple (X1 ,X 2 ,...XN). But the state need not be so
limited. For example, in QM x is the state vector -0, sometimes written I), a "point"
in an oo-dimensional complex vector space W". The essential thing is that there should
be a distance d(x,X 2 ) between any two states xi, X2, that is, state space can be any
metric space M. For RN we could take d(xl,X 2) = lir1 - X211 = [Zz (XV - X2i) 2] 2, the
euclidean metric. For QM state space WH, where x, = 01, X2 = 02

d(xi;X2 )= I1 - 211, where 1112 ( 10), (5-1)

and (-010) is the scalar product in Hilbert space XH. We can continue to call Ot(xo) the
orbit in this general context.

The basic (minimal, irreducible) idea of sensitive dependence at state x E M is that there
exist states x' arbitrarily close to x such that the x' eventually separate from x by at least
some fixed finite distance e independent of x' under time evolution. As emphasized in
section 5.1, this is it! We do not require exponentially fast separation of x(t) and x'(t).
Since this concept is so important, let us put it into a precise definition.

Def. The dynamics D with orbit function Ot has sensitive
dependence on initial conditions at state x if there exists an
e> 0 such that, for any neighborhood Y of x there exists
an x' E AN and a t > 0 such that d(¢t(x'), 4t(x)) > e. (5- 2)

The set of all such x is called the Julia set J of the dynamics D. This concept is very old,
as nonlinear dynamics goes, going back to Julia and Fatou, who worked on the iteration
of complex analytic maps in France around 1920. It is clear that Def. (5-2) guarantees
the fixed error e in the orbit through an X E J, as discussed qualitatively in section 5.1.

There arises a vexing question here. There may be functions F of the state x which are at
least as interesting as x itself. For QM, where the state x = 0, it is sufficient to mention
expectation values of Hermitian observables, the time correlation of 0(t) and 0(t + r),
etc. We could define SD for the observable F simply by using d(F(t(x')), F(¢t(x))) in
(5-2), where j is the distance in the metric space .M of the function F : M - M4. The
question arises: does the SD of the dynamical system D depend on the function, or map,
F in question? One can prove that it does not if F(x) is continuous (Ingraham, 1988).
Assuming continuous maps F always, we restrict to the orbit itself in this report.

But now notice that the so-defined SD does not always imply what we want to nean by
"chaoq "A simple example: consider a free particle, moving on a sti aight line for simplicity.
The phase space has points x = ( ,v), v =, and orbits (t) = vt + 6o, v(t) = v = const.
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Take the euclidean norm d(x', ) - [( ' _)2 + (v' - v)2. Then it is clear that for any

initial point x ( , v) and different point x' = (', v') with v' 5 v, we have

d(Ot(x'), q 1(x)) > v' - vIt.

Hence, no matter how close xI is to x, d > any given e for some time t; if 6 =1, d 1

for t = 1iv' - v I. $q the dynamics has SD at every point in phase space. every point
beongs to the Julia set. Similarly, many integrable systems show this "trivial SD" on
their unbounded orbits.

There is a very nhitural way to limit the SD (5-2) to ensure that it is equivalent to chaps.
Like al good definitions, it eschews technicalities and a list of special cases; it achieves the
desired concept at a single inspired stroke (Wiggins, 1990, hereafter abbreviated as W).
First, let us define SD for sets A with an e the same for all x E A. Second, let us require
that the set A be invariant and compact. "Invariant" we already know from Chap. 2;
it means that A is carried into itself by the time-evolution, so that SD is not a transient
prqpery. A compact means that it is closed and bounded. Making all of this precise, we
end up with the definitions

Def. The dynamics D with orbit function Ot has sensitive
dependence on the invariant compact set A if there exists an
e> 0 such that for any x E A and any neighborhood Y of x
there exists an x' E JV and a t > 0 such that d(qt(x'),t(x)) > e. (5-3)

There is another, independent feature of "chaotic" motion on a set A, namely that the set
be mixed up properly.

Def. For a dynamics D with orbit function Ot, V is topologically
transitive if, for any pair of open sets U1, U2 C V, the image of U1
under the dynamics intersects U2 at some time: qt(Ui) fn U2 # 0
for some time t > 0. (5-4)

Following Wiggins and Devaney (1986), we require both (5-3) and (5-4) for true chaos.

Def. The dynamics D is chaotic on an invariant, compact set A if D
has sensitive dependence and is topologically transitive on A. (5 - 5)

For convenience of expression we can also say that A is chaotic in the case (5-5). Thus we
have finally a precise definition of chaos in any dynamical system (and we can drop the
quotation marks in "chaos" when referring to this definition).

Sensitive dependence on sets (5-3) and chaos can be generalized to maps of the orbit or
"observables" as noted above. Again one gets the same SD and chaos with respect to the

map as with respect to the orbit itself if F : M - M4 is continuous.

Requiring SD on compact sets in phase space as in (5-3) for chaos rather than just pure
SD (5-2) excludes those cases of "trivial SD" from classification as chaos. For our free
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particle example above, the orbits are clearly unbounded, so could never be contained in
a compact set A.

5.2.1 Lyapunov Stability

It is interesting to get an expression of regular (non-sensitively dependcnt) motion by
negating the minimal definition (5-2) of SD. This reads

Def. The dynamics D is Lyapunov stable at state x if, given c > 0,
there exists a 6 > 0 such that if d(x', x) < 6, then d(0 1 (x'), ¢1(x)) < e
for all t > 0. (5-6)

Cf. W, page 6, def. 1.1.1. In the old work on iteration of complex analytic maps F(z),
z E C, mentioned before, such a map F was said to be normal at z. Def. (5-6) is the
nearest thing to continuity that we can define for whole orbits. Comparing (5-6) with the
previous definition of the stability of a fixed point in section 2.3, we see that the latter
is none other than Lyapunov stability specialized to the degenerate orbit x(t) = x* if we
define neighborhoods via the metric d in the usual way. So (5-6) is now seen as the logical
extension of (2-13a) to whole orbits.

5.2.2 Maximal Lyapunov Exponent

The Lyapunov exponents X1, X2,' "XN for a map or a flow in RN can be defined, but this
involves some tricky technicalities which don't arise if N = 1 (Def. (3-11) for maps). See
GH (1983). So we shall skip that in this report and instead define the maximal Lyapunov
cxponnct X for our general phase space M = any metric space. Let the dynamics have the
orbit function 0t.

1
Def. V(a) = lin sup In IID~dx)(x' - x)II (5 - 7)

t--+00 XE ( x) t

if this limit exists for all sufficiently small neighborhoods A((x). Doe(x) is the Jacobian
matrix of Ot at x for RN or its generalization for more general phase spaces A such as
Hilbert space % for QM. In (5-7) the Jacobian matrix acts on the vector x' - x, and we
take the length II ... 11 of the resulting vector. Sup means least upper bound, here over
points x' in sufficiently small neighborhoods of x. Thus we are varying the directions of
the small vectors on which the Jacobian matrix acts and taking the maximal vector length
so found. A numerical algorithm for computing X is given by Beiiettin ct al. (1976).

A little reflection reveals that X(x) measures the maximal ratio of exponential divergence
of the orbit based at x from other infinitesimally near orbits. X(,) > 0 for an orbit will be
defined as exponential SD. Now what we expect intuitively is ,(x) < 0 if the orbit thrmgh
x is Lyapunov stable. I know of no formal proof of this, but it seems very plausible and
we shall accept it here. So x(x) > 0 for some x implies the violation of Lyapunov stability
(5-4), so that its negation, minimal SD (5-2), is valid. Exponential SD is therefore just a
special case of minimal SD
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The motion in homoclinic and heteroclinic tangles has been studied carefully by mathe-
maticians (GH, 1983, Secs. 5.2, 5.3; W, 1990, Secs. 4.3, 4.4, 4.8) and proved to possess
SD on compact invariant sets A, (5-3). These sets A, called Cantor sets, are really weird
and intuition-defying. They are closed, totally disconnected, and perfect (every point is a
limit point). See the mathematical glossary in GH for these terms. In fact, the motion
is topologically equivalent to a certain "shift map" on the space of bi-infinitc scquences of
N symbols. This symbolic dynamics can be proved to be chaotic according to (5-5) (sec
W section 4.2). However, to my knowledge, it is unknown whether this extremely chaotic
motion shows exponential SD

5.2.3 Sensitive Dependence and Chaos in Quantum Mechanics

The question of whether there is "chaos" in QM is one of intense interest at the present
moment (1990), hotly disputed, with claims and counterclaims compounding a confused
situation. Part of the trouble is, of course, the unsettled nature of the definition of chaos,
implicit in my use of quotation marks around this term in most of this report. However,
with chaos clearly defined as in (5-5), rigorous proofs that there is no chaos in many
important observables of QM can be constructed (Ingraham, 1988). We treat this topic
briefly in this section and give such a proof in appendix B.

Consider the self-correlation C(t, r) = (k(t)14(t + r)) or the auto-correlation functional of
it C~r = ira1 -JT

C~r) _ l j C(t, ) (It. (5-8)

These have been computed numerically for simple model systems and plotted both in t or
r space and, Fourier-transformed, as power spectra. Decaying behavior in r and broad
band power spectra, "signatures of chaos," have been seen (Milonni et al. 1987, section
52; Pomeau et al. 1986).

However, we can prove that there is no chaos (5-5) in these systems by showing that there
is no minimal SD (5-2) in these systems, that is, that they are Lyapunov stable at every
state b E W". The proof can be done for any QM system - any dimension of R-, forced
or not, etc. One way would be to show that C(t, T) is a continuous function of the orbit
St(x) = the state vector ib(t) in the Schr6dinger Picture, in accordance with the theorem
on observables F mentioned above. For the state vector itself almost trivially has no SD
We show that it is Lyapunov stable.

Given the orbit ,k(t), let 0'(t) be an orbit initially near the first one: I17b'(0) - P(0)11 < 8,
where 11 ... 11 is the usual QM norm defined in (5-1). Let U(t,0) be the unitary time-
development operator. Then at any time t

I1'(t) - ¢(t)J = U(t, 0)(0'(0) - 0(0))11 = IW0'(o) - ?P(0)1 < 6 (5-9)

because U(t, 0) is unitary, does not change the norm of any state, Q.E.D.

But it is probably easier to prove directly that C(t, -") is Lyapunov stable. See appendix
B. From no SD for C(t, T), no SD for C(r) in T follows immediately.
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Another map of great importance is the expectation value

(q)(t) E (0(t)I q j¢(t)) (5- 10)

of observable q at time t. For example, the occupation probability of energy eigenstate ,
at time t, I(0€.l1k(t))12, is the expectation value (5-10) for operator q - 1€.)(€.1 - P6,
the projection onto the state 0,,. These have been plotted for model systems, both as time
series and power spectra, in the literature, and have appeared "chaotic." See, for example,
Milonni et al. (1987, section 52). However, it can be proved that (q)(t) for any QM system
and any bounded operator shows no SD and hence, no chaos.

Def. Operator q is bounded if JIq0ll < M110I, all € E R (5- 11)

for some constant M > 0. Since this proof is similar to the one for C(t, r), we leave it as

a problem for the reader.

Prob. 5.1. Prove that (q)(t) has no SD for q bounded. (Hint: see appendix B).

It begins to look as if one can prove analytically that there is no chaos in QM! But the
situation is not yet clear because of the existence of unbounded operators q in QM: (5-11)
not true, or equivalently, their spectra unbounded above or below or both. These can't
be ignored: a few examples are position and momentum of free particles or oscillators,
energies of n-electron atoms, orbital angular momentum, etc. The role that unbounded
operators play in possible chaos in QM is an open question (July 1990).

5.3 Discrete Fourier Transform and Power Spectrum

Say we have a set of numbers xj, j = 0,1,2, .N - 1, where N >> 1. They might be
obtained from sampling a flow at equally spaced times jAt over a time T = NAt, or from
a map dynamics xj = Fi(xo) over a large number N of iterations. Define the discrete
Fourier transform of this set by

N-1

Nj=0

Xk corresponds to frequency V-k = k/T. The inverse is

N-i1
Xj = 7N L h.e2 u  i j= 0,1,2,... N- 1, (5- 13)

k--0

obtained via the "orthogonality relation"

N-i

E e2 in(k- ) = NkJ, 0 < k,j < N - 1. (5- 14)
71=0
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Eq. (5-14) is nothing but the statement that the Nth roots of unity form a closed regular
polygon in the complex plane. Then the discrete power spectrum PD, is defined

PD(vk)-Ik 2, k=O,1,2,.**N-1. (5-15)

If we want to study a slice of a dynamics (typically in the asymptotic reginie) by the discrete
Fourier transform, we choose T and At such that the important system frcquencies are
contained in the interval (1T, (N - 1)/T) ; (1/T, 1/At). Incidentally, thc fast Fourier
transform, or FFT (see Berge et al. 1984, section III.4), greatly shortens the numerical
evaluation of (5-12).

Several features that distinguish the discrete Fourier transform and its power spectrum
from the usual (continuous) Fourier transform and its power spectrum should be noted.

a. If the set {xj} is a slice of a stable periodic orbit of period r << T, then the
discrete power spectrum PD(Vk) has peaks at all harmonics of the fundamental frequency
1/r less than Vmax z 1/At. For example, for a stable n-cycle of a map, PD has peaks at
the harmonics m/n, 0 < m < n - 1, of the fundamental frequency 1/n. This is a direct
reflection of the fact that the Fourier series of a process restricted to time interval (0, r)
or of a process periodic with period r has nonzero Fourier amplitudes in general at all
harmonics of the fundamental frequency 1/7.

b. The peaks in PD(Vk) at the dominant frequencies are finitely high and broad
and are asymmetrical. The power spectrum does not vanish between these peaks. It is
symmetric around viax/2.

C. Contrast the behavior of the discrete power spectrum PD and of the usual
continuous power spectrum P developed for stationary ergodic random processes (Reif,
1965, Sees. 15.13 - 15.15). For the quasi-periodic motion (4-16), P(v) is a sum of delta
functions at the frequencies ±vi, i = 1,2, . n. These are infinitely high and infinitely
narrow peaks, and P(v) = 0 elsewhere. PD(Vk), on the other hand, is peaked not only at
the vi but also at all their harmonics in the sense of remark (a). These peaks are finitely
high and broad, in accordance with remark (b). Call these spikes.

The discrete power spectrum is a valuable tool in nonlinear dynamics. Regular motion
shows up as spikes. A broad band power spectrum PD(1'k), a more-or-less continuous
background with a few spikes over it, is accepted as a "signature of chaos."

Further, a discrete self-correlation

1N-1

CD(m) XjXj+ (5-1)
j=O

can be defined. CD(m) decaying in m corresponds to a broad band power spectrum.

Prob. 5.2 Compute the discrete power spectrum for the logistic map (3-9) and
display it on a graph for the values of t given in Prob. 3.1. Note the different behavior
for It < y,, and yz > It, /10, - 3.5699....

64



5.4 Algorithmic Complexity, Kolmogorov Entropy, Etc.

There are other measures of "chaos," which we shall treat much more briefly than the
preceding ones in this section. The interested reader can pursue these topics, lightly
touched on here, by going to the cited literature.

5.4.1 Algorithmic Complexity

This is a measure of the randomness of the orbits of a dynamics. See Alekseev and
Yacobson (1981) for details and proofs. Some workers, especially Joseph Ford and his
collaborators, equate randomness with chaos. An informal sketch follows.

A finite word SN is a string of N letters from some alphabet C, for example L =
{1, 2,. .. m}. A special case is L = {O,1}, the binary alphabet. Then

Def. The algorithmic complexity K(SN) of the finite word SN is the
length (number of symbols) of the shortest algorithm which will
print the word. (5-17)

This definition depends (apparently) on the Turing machine, the algorithm, but can be
made machine-independent. Algorithms are also called "programs," "recursive relations,"
or "rules." We have 1 < K(SN) < N in any case. If, for large N, K(SN) is not appreciably
shorter than N itself: K(SN) = O(N) as N --+ oo, the word is called random

Define the algorithmic complexity (AC for short hereafter) of an infinite word soo as

K(so,) =- lim K(SN)IN, (5 -18)
N-oo

where SN is the first N letters of s,. Then if )C(s,) > 0, the infinite word is called
random.

Next, consider a map dynamics F : X -* X, where the phase space X may be quite
general. X is partitioned into a finite number of disjoint sets {E,E 2 ,... Ep} - £ (a
coarse graining of X). Then the actual orbit Fn(x), n > 0, is replaced by its itinerary: the
infinite word w 1 ,W2 ,w 3,.., according as the nth point falls into set E,, : F"(x) E E,..
We then define the AC of this infinite word as, in (5-17)! Since the itinerary depends on
the initial point x, the partition 6, and the map F, denote this AC by A(x,FIE).

IC(x, FIE) - lim K(ZN)/N, (5- 19)
N-o

where i$N is the finite m-ary sequence w1 ,w 2 ,.. 'WN. Now let K(x,F) be the least upper
bound (or sup) of (5-18) over all partitions E. Then we say that the orbit based at x is
random if K)(x, F) > 0.

We can see the motivating idea behind this formalism. If the orbit is really "random" in
the intuitive sense, there is no short algorithm available to print it out. We must simply
numerically calculate the whole orbit. This makes A(x, F) > 0.

65



5.4.2 Kolmogorov and Other Entropies

This is an, idea closely related to algorithmic complexity, whose aim is to quantify
randomness in a dynamics. Again one works with maps F on very general spaces. The
entropy h(F) measures the uncertainty in predicting the (N + 1)th point of an itinerary,
given the first N points, for N >> 1. Again one uses a partition £ of phase-space, and
replaces an orbit by the labels of the coarse-graining sets that it visits. Kolmogorov (or
metric) entropy uses measure theory and a generic orbit. The topological entropy is defined
slightly differently, following individual orbits of F. See Alckseev and Yacobson (1981)
and Young (1983). The upshot is that the dynamics is called random or unpredictable if
the entropy h(F) > 0.

To my knowledge, the precise interrelationships of sensitive dependence, algorithmic
complexity, and the various entropies have never been clarified. There are scattered cross-
connections like the Pesin formula, (see Young, 1983, p. 604). The ideas of unpredictability,
randomness, and chaos certainly overlap; they cannot be independent. For instance, one
could ask: does a dynamics which shows SD in the minimal sense (5-2) necessarily have
positive algorithmic complexity and entropy? My conjecture is "Yes."
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6. RENORMALIZATION GROUP

6.1 Introduction

There are phenomena in mathematics, physics, and other sciences which occur repetitively
on all length scales. The geometry of such invariant limit sets is called self-similar
(precisely, the part is topologically equivalent to the whole under a scale change x iF- ax,
a = const.). We already saw an example of this in the period-doubling process in the
logistic map (section 3.10.2). An all-important example is the phenomenon of phase
transitions in condensed matter. At the critical point the intera, tions are self-similar
under arbitrary changes of scale ("coarse-grainings") because the correlation length is
strictly infinite at the critical point. The clearest explanation of this in nontechnical
language that I know is Bruce and Wallace (1989). This directly leads to an algorithm for
computing the famous critical exponents of thermodynamics, for example, the exponent a
in the heat capacity C near the critical temperature T,

C cc IT - TI - ' for IT- TI1 small, (6-1)

which has a typical value a ;,, 0.125.

This algorithm, known as the renormalization group (RG), exploits the self-similarity by
defining a transformation, or map, R of coupling constants. If R is iterated, the system
is taken into the asymptotic, noncritical regime of weak coupling constants, where known
analytic results or perturbation theory give reliable results. Iterating backward, we recover
desired thermodynamic variables such as a free energy in the realistic coupling range. The
RG can thus in principle deliver exact results inaccessible to perturbation theory. The
system at the critical point x, itself is not changed under the iteration because of the
self-sinilarity there: R(x,) = x, that is, x, is a fixed point of the RG coupling constant
map R. This ties phase transitions to nonlinear dynamics, its concepts and its techniques.
In particular, linear stability analysis at x* = x, gives the critical exponents. For a simple
treatment of the mathematics, see Mars and Kadanoff (1978) or Chandler (1987, Secs.
5.6, 5.7); for the more advanced and complete theory (see Plischke and Bergersen, 1989,
chap. 6).

6.2 RG for Ising Lattices

Ising lattices are first of all lattices: regular nD repeating patterns of discrete points.
Second, there are spins si, i = 1,2, 3, ... N, at the N lattice sites, each having only two
values "up" or "down": si = ±l, all i. A particular configuration {s1 , s, -. SN) = V,
where each si = +1 or -1, is a (microscopic) state of the system. Thus there arc 2 N states.
The energy is due to interactions between nearest neighbor spins in the lattice; the spins
can also interact with an external magnetic field H via their magnetic moments /I. Thus
we can write for the energy E, of the state v

V sisj - pH Ys 7 (6-2)
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where the prime on restricts the sum to nearest neighbor pairs. J > 0 corresponds to a
model of a ferromagnet, but Ising lattices model very many systems, even "lattice gases,"
un(er a slight reiterpretation.

The basic problem in equilibrium statistical mechanics is to evaluatethe partition function
Z,

Z Oe- , 1/kT, (6-3)
V

where T = absolute temperature and k = Boltzmann's constant. The sum is over all states
v. (The grand partition function will not enter here.) From Z the entire thermodynamics
follows!

For dimension n = 1 (6-2) can be written

N N

Ev= -J sisi+l - pH si (SN+1 -si), (6-4)
i=I i---1

where for convenience the 1D lattice ("chain") was closed by imposing periodic boundary
conditions. Then

Z(K, h, N) exp(Ksi +l + hsi), (6- 5)

where K =fJ, h =_ PyH, and the sum is over all 2 N states {sj}. The sum can actually
be done in closed form (!) (see Plischke and Bergersen, 1989, section 3.F).

Prob. 6.1 Evaluate (6-5). This is mainly to get you thinking about such large sums
and to see how nontrivial even the simple-looking sum in (6-5) is! For the transfer matrix
method, see Plischke and Bergersen, or Chandler (1987, Ex. 5.21).

For h = 0 the answer is especially simple,

Z(K,N) - (2 cosh K)N (6-6)

(A clarification: this is the answer in the so-called thermodynamic limit N -4 oo, that
is, the leading term.) Then it turns out that the 1D Ising lattice has no (proper) phase
transition: the order parameter m - (si), any i, the mean value of the spin for h = 0,
stays zero for all T > 0.

6.2.1 ID Ising Lattice by the RG

Now we wish to derive (6-6) by a recursive scheme, the RG, and verify that there is no
phase transition. We follow Maris and Kadanoff (1978) and Chandler (1987).

Write out the sum (6-5) with h = 0 and group the factors in a certain way:

Z(K,N)= 1 exp[(sIs2 + s2 s3S + s4 +")
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- : exp K(si s2+s2s3) eV K(s3~gs-4 -ss)- --

Sum first over even-numbered spins 2, 4,6, -- -

Z(K, N) = j{expK(si + s3 ) + ep-K)(s, +,s3 ))}x

{exp K(S3 - ss) + exp(-K)Cs +s 5)} x - (6-7)

Every other degree of freedom has been removed; the spins have been "thinned out" (see
Fig. 6.1).

0 0 0 0 0 -*0 0 0

1 2 3 4 5" . . 3 S

Fig. 6.1 "Thinned out" Ising chain (see text)

Now we try to make (6-7) look like the original sum for N12 lattice sites with a possibly
different coupling constant K'. If this is possible, a recursion relation can be developed.
So set

e (3+ 8') + e- K(S+S') = f(K)e K'sa' , all s, s' = ±1. (6-8)

If this wcre possible, then from (6-7) and (6-8) we would get

Z(K,N) = >i: f(K)eK'iS33 x f(K)eK'S35 x ...
Si ,83,85,""

f(K)N/2 Z(K', N/2), (6 - 9)

with the same function Z! Returning to (6-8), we see that there are only two different
cor litions:

=' = 4-1 , + 6 2 K= f(K),,.K',
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S = - 1 , 2 = f(K)e-K  (6-10)

These can e solved, and we get

K' = Incosh2K , f(K) = 2(cosh2K)' / 2. (A)
2

Now by extensivity we can set I Z(K, N) Jq(K). Since the (Helmhloltz) free energy
G = -kTlnZ in general, we see that g GI -3 GN, apart from the factor -fi the free
energy per spin. We call g "the free energy" from now on. Thenatural logarithm of (6-9)
can then be rewritten g(K) = (1/2) In f(K) + (1/2)g(K'), or, with (A), as

g(K') = 2g(K) - ln[2(cosh 2K)1 21. ()

Equations (A) and (B) are called the RG equations of the 1D Ising lattice. By noting
f(K) = 2 exp K' from (A), the inverse transformation can be written

K 1 cosh (r2K )  , (C)

1 , - 1 K '
g(K) -- 2g(K) + 2 ln2+CD)

We note immediately that K' < K always.

The first application we leave as a problem.

Prob. 6.2 Apply (C) and (D ) starting with small K' and iterate to get g(K) for
"realistic" values of K - 2.7. Take say K' = 0.01, for which you can use Z(K', N) w
Z(O, N) = 2 N from the exact result (6-6), and thus g(K') ; In 2. Compare g(K) at each
step with the exact value derived from (6-6). Notice how fast the iteration converges to
thc exact values.

On the other hand, we could start with large K, taking Z(K, N) ; e NIK and g(K) : K
from (6-6), and iterate (A) and (B) to try to calculate g for medium K. But this does not
work, the errors grow exponentially!

Second application. Examine the "flow" (used here for a map orbit) of the coupling
constant under (A) and (C). See Fig. 6.2.

K* = 0, 0o are the only fixed points of (A) ok its inverse (C). Point 0 is stable, point co is
unstable under the map (A): K' = R(K) = (1/2) In cosh2K, r". you can check. What this
means physically is as follows: on thinning out the spins (going to a larger length scale
lattice spacing), we go to a system with a weaker coupling constant K' < K. This is the
meaning of the flow in Fig. 6.2. Only the points K = 0 and oo are independent of this
change of scale since K* = 0 (T = oo) is a completely disordered, K* = oo (T = 0), a
completely ordered, regime. A proper phase transformation would correspond to a finite
K* (0 0 or o) also independent of a change of scale, thus a fixed point K* of R 0 or 0o.
The absence of such a finite fixed poin. in addition to the trivial fized points K* = 0, 00 of
the map R means that the Ising chain shows no phase transition.
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0 (A)

o0> >>-()

* : stable
o = uristable

Fig. 6.2 Phase portraits for the 1D maps A and C, showing stable and unstable fixed
points

One can define a correlation length C by

(ss)=e- M ,j=1,2,."N. (6-11)

The exact Ising chain theory gives C = -(lntanhK) - l. Thus - 0 at K* = 0 and
= +o at K* = oo, so the system is completely uncorrelated at T = o and perfectly

correlated a+ T 0. This makes physical sense.

N.B. C = oo is taken as the definition of critical point. In this sense the Ising chain is
sometimes said to have a phase transition at T, = 0.

6.2.2 2D Ising Lattice by the RG

For n = 2 we get, for h = 0,

Z= exp[K Z' ssj], (6-12)

where K =fIJ again and the spins are now at the sites of a 2D square lattice, let us
say. Already the evaluation of the sum (6-12) is so horrendously difficult that its exact
evaluation in 1944 made L. Onsager famous. The solution answered many dcep and
worrisome questions. Chief result: there is a phase transition at critical temperature
P, = 1/kT, = .44069/J. Further, a whole set of physically reasonable thermodynamical
critical exponents was obtained. See Plischke and Bergersen (1989, section 5.A) for details.
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Now we try to apply the RG niethod to (6-i2). We proceed just as iii section 6.2, so We
can be briefer. Write out (6-12) and group the factors into sets each of which contains just
Oiie spin from eey other diagonal, spins ... 5,6,... (see Fig. 6.3). Then sum over spins

i56. 56-..

Z(KjN) =exp[ks 5(si +82+8S3 +±34 )1 exp[KsG(s2 +83+S7 +8)..

Z {expl K(s, + S2 + 3 + S4)] + exp[(-K)(si + S! + 83 + S4)1lX
iemaiiing si

{exp[K(Jj + S3 + 87 + ss)] + exp[(-K)(s2 + S3 + +ss)} x... (6-13)

But now We cannot set the first factor { ... } in (6-13) equal to f(K) exp[K'(si S2 + S2S3 +
s3s4 + s4si)] (that is, nearest neighbors in the thinned out lattice) for all si = ±1, i =
1, 2, 814, since this gives four independent equations, and we have dilly f(K) and K' to
chdosi. So we impose

exp[K(si + 82 + 83 + §4)] + exp[(-K)(s, + 82 + 83 + S4)]

= f(K) exp[-KI (sis2 + s2S3 + S04 + S4 1 )+K 2 (S1s3 + s2s4) +K3 S03S4, (6 - 14)

nn nnn square

Where we have labeled the terms nn for nearest neighbors, nnn for next nearest neighbors,
and square for the four spins around a square in the coarse-grained lattice, see Fig. 6.3.
Then the four independent possibilities: all si equal, three si equal and one unequal,
S1 = S2 = -S3 = -S4, and si = -S2 = 83 = -S4, (i = 1,2,3,4) give the four equations

exp 4K + exp(-4K) = f(K) exp(2K1 + 2K 2 + Ka3)

exp 2K + exp(-2K) = f(K)exp(-A73 ),

2 = f(K)exp(-2K 2 + K3 ),

2 = f(K) exp(-2K, + 2K 2 + K(3). (6- 15)

The solution is

Ki = In cosh 4K, K2 = ln cosh 4K, K3 = In cosh 4K - In cosh 2K,

f(K) = 2(cosh 2K) (cosh4K) . (6- 16)

Now substitute (6-14) for each factor {... } of (6-13). A factor f(K)N/ 2 comes outsidc.
Notice each nn pair appears twice, While each nnn pair and set of four spins in a squarc
appears once. Hence

Z(K, N) = [f(JK)]N2 S exp[KI 5 SiSj + K 2 5-S"11 + K3  " sSqrS.].

N/2 spins

(6-17)
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0 0 0 0 0 0
/// ./

/ 2 5 4 2 4/0 , 0 .. " 0 0 0

7 6."" 3 7 30 0 0 ,0 "0 0

o *0 /0 0 0 0
... 8 o// 8

Fig. 6.3 "Thinned out" 2D square Ising lattice

Sum E' is over all nn pairs, sum E" is over all nnn pairs, sum "' is over all sets of four
spins in a square in the coarse-grained lattice.

The moral is this: due to the greater connectivity of the 2D lattice, thinning out the spins
by summing those on every other diagonal results in a more complicated interaction (6-17)
than the original one (6-12). This happens generally in all dimensions > 1. Thus an exact
RG calculation of Z fails.

One can try several approximations to salvage the method.

1) Neglect K 2 , K 3 entirely. Then

Z(K, N) 5 [f (K)]N/ 2Z(KI, N/2), K, = I In cosh 4K. (6 - 18)

But this is equivalent to the 1D RG analysis (just set 2K K, 2K K', Z(K, N)
Z(K, N), and compare (6-18) with (6-9) and (A) written with tildcs on K, K', and Z.)
Hence there is no phase transition. Approximation (1) is too rough.

2) Neglect K3 and approximate

A1 E~ sisj + K 2  SISm 'R K'(I,Kf-)ZEsisj (6-19)

for sonic K'(K1f, K2 ). This gives (6-18) with this K' substituted for K1. Introduce the
free energy g(K) as before; then the In of this last equation gives

g(K') = 2g(K) - ln{2[cosh2K] [cosh4K] }, (B)
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where the last equation of (6-16) was used to substitute for f(K). Now (6-19). cannqt, pf
course, be satisfied for all spin values. We want to estimate KI by satisfying it when all
spins arc aligned. Since there are N nn and nnn pairs in a 2D square lattice of N/2 sites,
we have in the aligned case

K E sisj = NK , K 2  Sis, = NK2

thus K + K2 = K' from (6-19). Then from (6-16),
3

K' = - In cosh4K (A)
8

To summarize: (A) and (B) are our approximate RG equations for the 2D Ising lattice.
The inverses can be written down, but we skip them.

Now the map (A) has trivial fixed points at K -- 0, oo as before. But it has the nontrivial
fixed point K* = If,

3
KC = 3 In cosh 4Kc =' K, - 0.50698. (6 - 20)

8

But now K* = 0 and oo are stable, while Kc is unstable. Sce the phase portrait of the
"flow" in Fig. 6.4.

S< <o > •(A
B K o K-> (A

AC

S-"stable
o unstable

Fig. 6.4 Phase portrait of the ID map A, showing the trivial stable fixed points and the
nontrivial unstable critical fixed point

The physical meaning of this parallels the discussion at the end of section 6.2.1. Going to
a larger length scale now drives systems with coupling weaker than R", to the completely
disordered regime K* = 0, but systems with coupling stronger than KC are driven to the
completely ordered regime K* = oo. But systems with K = If, exactly are independent
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of a change of scale, have correlation length = o, and correspond to a proper phase
transition. According to (6-20), this critical temperature T, is given by

J/kT ,, 0.50698 ; (6 - 21)

compare the exact value 0.44069 from Onsager's solution.

Finally let us see how critical exponents are predicted on the RG approach. We assume
that the free energy g(K) has a nonanalytic part which ; a(K - K) 2- ' near K,. Then
from (B) above and

K' - K , (dK'/dK) (K - K)
K.

we get

/ dK' 2-a

a dK' ) (K - K 0 ) 2-a = 2a(K - KC) 2-, + terms regular at K = K,. (6-22)

where dK'/dK is understood to be evaluated at K.. But it follows from the theory of
analytic functions that the nonanalytic terms in (6-22) must be equal. Cancel a (assuming
a 0 0) and the factor (K - K) 2- a,, take In, and get

(2- a) lndK'/dK = n2 = , a = 2- 1n2/ ln(dK'/dK) ; 0.131. (6-23)

dK'/dK from (A) was evaluated at K from (6-20). This a is in fact the heat capacity
critical exponent (6-1) since the relation of C to g(K) can be checked to be

C/N = kK 2 d'g(K)/dK'- ,

which makes C - IK - Kj - -, IT - T0I-" near K. Further, this is a. con,inuous, or
second order phase transition, since g, dg/dK, but not d2g/dK2 are continuous at K = K,.

6.3 RG Applied to Period-Doubling

We treat the 1D quadratic map with parameter A,

FA = X 2 + Ax ,-2<A<1, (6-29)

which maps the interval [-1,1 - A] into itself. This map is topologically equivalent to the
logistic map (3-9) by a linear change of variable. There are two fixed points x* = 0, -A.
In -1 < A < 1 both are stable (remember, "stable" will mean asymptotically stable in
this section). At A = -1 both go unstable, and the stable fixed points

-=- (A + 1) - /(A + 1)(A - 3) (6-30)
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of ,F2 a-e born. These form a stible 2-cycle of F. Conslder the orbit based at 4;. + , u
sniall. Then

x1 = F(x* + u) = x* + Axi, Ax = (A + 2x*)u + u2 , (6-31)
where we simply expanded (6-29) out and used F(x.) " x*. Iterating again, we. get
obviously

X2 E F(x- + AX) = + Ax 2, Ax 2 -(A + 2x*)Ax1 + (Axi)2  (6 32)

where we t#sed (6-31) and F(x*_) = x.. Now substitute Ax from' (6-31) ifito AX2 from
(6-32), and keep only terms of O(z 2). By expanding out, this becomes

Ax : (A + 2x*)(A + 2xz.)u + [A + 2x* + (A + 2x: )2]u2 . (6 - 33)

Thi's i'oks something like the original map (6-29); by rescaling

X Eau , X=a/X 2 , a=A+2x* +(A+ 2) 2, (6-34)

(6-88) takes the form ' = FA,(x'), where

Fi,(X')=x'2 +A'x', A'=(A+2x*)(A+ 2x) A 2 + 2A+4. (6-35)

We ised x: fiom (6-30). But FA, is the same function which occurred in the original map
(6-29) for at transformed parameter

A' = R(A) - -A 2 +2A+4. (6-36)

Thereby we have achieved an RG transformation for period-doubling in quadratic maps.
This guarantees the self-similarity noted in section 3.10.2, the period-doubling cascade.
An important fine point: the map (6-35) is not the same as the map (6-29) since different
regions are mapped, cf. (6-34) and u - x - x. That is, F' is not the same map as F;
rather, they are topologically equivalent !
Now we can draw various conclusions. The fixed points x. of F1 are the same statesas the fixed points 0, -A' of FA,. Thus x. are stable in the range -1 < A' < 1, or
1 - < A < -1 from (6-36). At A = 1 - vF ; -1.4495 they lose stability, and twostable fixed points of F' 2 are born, that is, a stable 4-cycle of F. Thus the RG methodcan approximate the period-doubling bifurcation values which we called Pt, n > 3, for the
logistic map in section 3.10. '
We can continue this way, defining period-doubling bifurcation values A,, with A1 = 1- v/6.In the limit n -+ oo, A,, -4 a limit A.. Solving A. = -A + 2a + 4 from (6-3d), we
get

Aoo =(1 - V1/7) ;:- -1.5616. (6- 37)

Pr6b. 6.3 Find the linear transformation connecting map (6-29) with the logisticmap. Thus translate the values A1 and Aoo found here into values of p, and compare with
P3 and yoo found in section 3.10.
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If we assume that the convergence of A, is asymptotically geometric: A, = A,, + C6-n

(6 > 1), we get the same 6 found before, (3-10). This is no accident; one can prove easily
that if we have a new parameter A = g(p), g differentiable, then 6g defined by (3-10) with
/I - g() is exactly the same: 6g = 6. Further, the scaling parameter a defined in (6-34)
should also be asymptotically universal (check by putting 4* from (6-30) and A = A,.
into this formula). The "exact" value found for the logistic map is a ; -2.5029078..

6.4 RG Applied to the Tangent Bifurcation

Tangent bifurcations were described in section 3.10.3. We want now to calculate the time
of transit, the time that the orbit point stays in the "neck" in Fig. 3.9, by RG methods.

Iterate the map G, and, in keeping with the spirit of the model, keep only terms of O(x 2 )
and O(pz).

G 2(X) =[t + (Y + X _ X2) - + X - ) 2 + X2 .  (
_2;, :ti~~x-2(6-38)

But

1G4 ,(2x) = 2 + x - 2x 2

2

the same as (6-38), so

it 2 G4 ,,(2x). (6 - 39)

This is exactly the statement that the map G 2 is topologically equivalent to the map G.,,
in the region X : x and pL small via the homeomorphism h(x) M 2x, cf. (3-7).

Hence if we define: N(s) steps are necessary for the orbit point of G,, to pass through the
neck, we have

N(p)/2 = V(41t) , (6 - 40)

since the transit time is only half as long for G2 as for G,. This functional equation has
the solution

N(I) = C/v/i , C = const. (it < 0), (6-41)

which is the desired answer.

6.5 RG Applied to Percolation

Percolation theory has evolved considerably since its humble beginnings as the study of the
percolation of fluids through porous solids. For some basics, see Plischke and Bergersen
(1989, pp. 317, 318). The notions we need are the following: there is a lattice, say 2D,
with site occupation probability p. At p = Pc, the critical probability, the infinite cluster
just forms. At this point the configuration: the lattice with occupied and unoccupied sites
marked 9 and o respectively, should be self-similar, that is, be invariant under an arbitrary
change of scale x t ax, (see section 6.1).

We take a triangular lattice with some occupation probability p and coarse-grain it by
dividing it into blocks of three sites. These block sites will be said to be occupied or not by
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the rmajority rule: occupied if the number of P's is three or two, unoccupied if this number
is o11 or zero. See Fig. 6.5.

* = occupied

o = unoccupied

A

00

Fig. 6.5 Coarse-grained triangular percolation lattice

The block sites are put at the centers of the original equilateral triangles. Therefore the

scale (def. lattice spacing) has been increased in the ratio 1: v/3 (see Fig. 6.5).

If p' is the block site occupation probability, we have

p, = R\/(p) p+ 3p 2 (1 -p) . (6-42)

Ex. 6.1 Verify (6-42). This is a simple exercise in using the laws of probability.

The RG map (6-42) has fixed points p* = 0,1, and 1/2. The first two are trivial fixed
points. We ideitify pc with the third, pc = 1/2, for the reasons given just, above. The
"flow" under iteration of the RG map (6-42) could be investigated as before, but we are
more concerned here with calculating a critical exponent.

We assume that the correlation length (p) has behavior

O(p) oc 1P - P, 1- , (6 -43)

with critical exponent v near the critical point. The aim is to calculate v using the
RG method. Now we have increased the scale by a factor a > 1 by the coarse-graining
operation, so have decreased the correlation length by the same factor, '(p') = (p)/a.
See Bruce and Wallace (1989) for a clear explanation of this. But since the system is
invariani at p = Pc, the same law (6-43) holds for the rescaled lattice,

(p9) oc p'- -" , (6-44)
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Hence Ip - pcI-v /a =-p - p~-,or

p -P p=ca 1/'P pPC) . (6-45)

Now write

P' PC + (dp'/dp) I (p - PC) 1/2 + 3/2(2) - 1/2).

Compare this with (6-45); we get al/' (-vF3)1/v = 3/2, since a~ = V-goes with the R.G
map (6-42). Solve:

V=lnVN/1/n3/2;zi135 .(6-46)

More rigorous methods give v = 4/3, so the RG result is not bad.
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7. PARTIAL DIFFERENTIAL EQUATIONS

7.1 General Reiiarks

Pde dynamics is the most difficult we have yet met in this survey. One mtist soll'e
differential equations in several independent variables x E ?" and in time t for fields
c!(x, t) defined at all points of some region U of R" and some range of times. Thus there
are an infinite number of degrees of freedom as opposed to the finite-diiiensional phase
spaces of flows, sets of N ode's. ("Pde" and "ode" for partiai and ordinary differential
equations, respectively, are abbreviations common in the literaure, andi ve shall ise them.)
Add to this the fact that there are different species of pde's (elliptic, hyperbolic, etc.), each
with its own kind of initial and boundary conditions in order to be well-posed, while there
is only one kind of ode. If the computer is turned loose on a badly posed pde, it prints
out reams of nonsense.

Different ways of circuiventing these difficulties in pde dynamics have been devised, since
the bkiite force method of simply integiating them from initial and bbundary conditions
as specified in existence theorems is usually impracticable, even for the largest computers.
Solviig pde's in physics is as much an art as a science; it takes experience and good intuiton
to capture the essential features of a rigorous solution while neglecting a vast number of
inessential details. We will not discuss all of these ways here but focus on one method only,
the Galerkin method, which is particularly well-suited to revealing those features of a pde
dynamics in which nonlinear dynamics ("chaos theory") is interested. it in fact converts
the pde dynamics into a finite-dimensional flow, about which we know quite a lot (Chap.
2).

7.2 Convection Equations

A typical phenomenon of interest is convection in an incompressible, viscous fluid. The
basic equations are the Navier-Stokes equations of hydrodynamics and an energy, or heat,
equation. In the Boussinesq approximation and in nondimensionalized form the equations
read

O'v/&1+ 1(vV)v= -Vp+ Av+RTfi, (7-a)

OT
P - +v. VT= AT+ fi.v, (7- 1b)

V.v=0, (7-1c)

Boundary conditions. For example with solid walls:

6T
v = 0, T = 0, a condition on Tn (onthewalls). (7- id)

Here v fluid velocity, T - absolute temperature, p = pressure, A = V2 is the Laplacian.
The stationary or quiescent solution of the original convection equations is simply

vo=0,VTo=-Afi, A>0 const., (7-2)
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which describes a zero velocity field and a uniform vertical temperature gradient. fi is
a unit vector in the direction of the uniform gravitational field g. Thc inhomogeneous
boundary conditions of those original equations for Vjtj and Trot specify velocity or its
derivatives and temperature or its derivatives on the boundaries in physical 3-space K .
Having found the quiescent solution (7-2), one writes pde's for the excesses v and T,
defined by

Vtot Vo +v (=V), Ttot=To+T.

Since To and v0 satisfy the same boundary conditions as Tt and vOtL, the excesses
satisfy homogeneous b.c. 's as in (7-1d), very important for the applicability of the Galerkin
method. Let "b.c.'s" be short for "boundary conditions" hereafter; it will save a lot of
space. Homogeneous b.c.'s mean linear b.c.'s: if fields q1 and 0 2 satisfy the b.c.'s, then so
does any linear combination a 1 + b02 . The excesses and the coordinates are then made
dimensionless by dividing them by available dimensional constants (beware, this can be
done in several ways!) so that the only residue of the dimensional physical constants of the
original convection equations left in the equations (7-1) are a few dimensionless constants,

R? = gfAL'/vX - Rayleigh number, P E =IX E Prandtl number. (7 - 3)

The reader can refer to any number of good books or articles for this Boussinesq reduction
and for the definition of the various physical constants occurring. We follow here. Gershuni
and Zhukovitskii (1976), hereafter GZ. We will only name them here: f = coefficient of
thermal expansion, k E thermal diffusivity, v = coefficient of kinematic viscosity, L
characteristic length. fi, A, and g have already been defined.

7.3 The Rayleigh Problem

If we assume 2D motion in a plane horizontal layer with z pointing up: no y-dependence
and vy = 0, equations (7-1) simplify. For a stream function ?(x, z) exists:

vZ = Wax/O x =¢, VX -00/0z -- : (7- 4)

which satisfies V . v = 0 identically. (From now on we often use a subscript x or z to mean
O/Ox or O/Oz.) Now if we take the zx curl of (7-1a), the Vp term is eliminated. Note that

OV/Oz - O8v/x = -0,, - 'X - -A 2 Vb,

where A2 is the 2D Laplacian. The nonlinear terms in (7-1a) and (7-1b) become Jacobian
determinants, defined for functions f and g of x and z as

Of, g) = Of Og Of Og
O(z,X) - Oz OX OZ z

We then get, where J Of/Ot,

A24= A'O + RTx +1 0(0, A 2l)

1P O(Zx)
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O(z,x) '

b.c.'s: b= b z =T O at z = 0,1. (all x, all t). (7 -,5c)

Here the homogeneous b.c.'s (7-5c) came from the Rayleigh problem b.c.'s: thc upper and
lower plane boundarics of the layer are free surfaces (no tangential fluid stresses), that is,

?,= 0, OvlOz = OvYlOz =

on those surfaces, Also L was chosen to be the height of the layer, so that diinpcnsionlcss
z = 0,1 defines. those surfaces.

7.4 The Galerkin Method

Equations (7-5) are close to a standard form for nonlinear pde's, which we take as

S= AP + F((I)), L(q,) = 0. (7-6)

Here 4)(x,t), x E &n, is the field or set of p fields in question, thus (b E RP. A is a
linear operator and F, a nonlinear operator on 1 usually involving partial derivatives with
respect to x. £(I)) = 0 is the set of homogeneous boundary conditions and possibly linear
pdc's not involving 9/Ot, like (7-1c) for example. We shall call C()) = 0 "the b.c.'s" for
short. Now an important concept:

Def. Let 7 be the linear (or vector) space of all p-component spatial
functions O(x) E RP, x E Rn, which satisfy £(O) = 0. (7 - 7)

(Remember how general a concept "vector space" is: any set of objects closed under
taking linear combinations!) Any such O(x) is called a Galerkin vector. For example, in
the Rayleigh system (7-5) any Galerkin vector has the form

¢(x,z) = (T(xz)) E R2; k and T satisfy (7 - 5c). (7-8)

We assume that 7 is invariant under A and F, A : 7 - 7, F : N, 7- . The last
requirement is highly nontrivial.

But we can immediately write down a complete set or basis {,k} of Galerkin modes
satisfying (7-8):

O,, =-sin n7rz sin kx, Tnk - sin n7rz cos kx,

n=1,2,3,... , O<k<oo (7-9)

The basis {qSk} spans the infinite-dimensional vector space 7. (One advantage of the
Rayleigh b.c.'s (7-5c) is that the Galerkin modes (7-9) take such a simple form. For
one free surface and one solid wall or for two solid walls, or for more generally shaped
boundaries and any b.c.'s, one cannot in general express the Galerkin basis in terms of
finite expressions in elementary functions.)
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For the genc-ral system (7-6) let 10,(x) I all or) be a Galerkin basis for scme infinite index
set of labels ar. Then any solution of (7-6) has the form

4(~)= E comm~) (7-10)

for somfz fu1nctiojs 'r..ji X time only- Here and below may have to be interpreted
&,- zla izitcgral- f &rif the labels a are continuous. -W invariantL-under F, in other words,
prs.i4ucts of the expressible as linear combinations of all -the , was necessary for the
truth i of (7-10). Write this formally as

F~ 1:) fa(c) a, for any c:= 1c.1j all ea}. (7-11)

The Galerkin modes form an algebra in this sense. For the linear operator A we write

AZc =Zafc , (7-12)

which introduces the matrix elements a,,, of A. Then when wve put (7-10), (7-11), and
(7-12) into (7-6) and equate coefficients of the linearly independent , to zero, we get the
equations of the infinite-dimensional nonlinear flow

c, =ZEa,,.c#±f(c), alla, (7-13)

that is, an infinite set of coupled nonlinear first order ode's in time for tht. *(t)~! Eq.
(7-13) i -exact, and equivalent to the pde.system (7-6) in principle.

The idea of the Galerkin n'..!-hod is to approximate the solution (7-10) by using a finite
set of the most important modes, say 01, 02, -. - -M after renumbering the labels a~. One
writes 1,(x. t) l ci (t)Oi(t) and gets an approximate closed set of Ml ode's by keeping
only M of the equations (7-13) and dropping all the r.-, i > Ml, in those equations:

M
6iZ aiej + fi(c'),

C =-i. -C-2 . -.- - 1, , 1, 2,3, - ALI (7-14)

Choosing the "mnost imnportant rnod-z," is olt course an art. See further remarks below.
Tochnically, one trurncaes the infinite set (7-13) by projecting it onto the flnite-dimenmional
subspacc liv C 1-H spanned by 01, h2, - - OM . In particular, .f,(cI') comes from fi(c) by
setting to zero all ci, i > 11. This prescription is all tight if the f,,(c) admit power series
exp~ansions in the c,6.
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One method of choosing a Galerkin basis of 71 has some advantages. We use the noirmla
modes gi(z) of the linearized problem t = A'!, with the same b.c.'s £(O) = 0. Look for
solutions #(x,t) = e'g(). Then ,cancaing ext, we get

g = Ag,:Cg)0. (7-1 )

Let gi(x), );(z, i = 1,2,3,--- be the set of eigenfunctions and eigenmalues of A. Usually
the set {g spans Wi; if generalized eigepfmctions of A exist (see appendix A), they miist
be adjoined to {gil in order to span If. Assuming that the proper eigenfitctions do span
7 we can use them instead of the general Galerkin basis ised above. The flows (7-13)
and (7-14) simplify because the matrix (aij),is diagonal. The approximate flow then reads

j = Ac, + fjZ' ), i = 1,2,.. - .-- (7 - 16)

7.5 Rayleigh Problem by the Galerkin Method

Let us come back to the specific system (7-5). We can put it into standard form (7-6) by
dividi-.;g (7-5b) by the number P and "dividing" (7-5a) by the operator A2 . The latter is
all right if A2 has an inverse A2' on the space spanned by (7-9); and this is in fact so,
since

A24.k = -(n 27 2 + k2 )#.k =--tA.k,. (7- 17)

and 7nk is always positive.. So we rewrite

~ ~~ ~~(f, A2b--- 1 0(,2)
= .A2 +RA2 'T, + p 2 o(z,X) (7-18a)

T+ 7 + 1 a (7- 1Sb)

0 = Cz = T = 0 at z = ,1 (all x and all t). (7 - 18c)

The normal modes arc (GZ 1976)

,. ( O n, [k - a k sin nn z sin k( - 9
gnk - .T) = b,, sinnirz cos kxj' (7-19a)

= + p_12 Y + Rk 2 12

---P-',k 2 k P.- k (7 -19b)

af k = [A:kP + 7nk] b" ,nk - 2 +k 2 . (7 - 19c)

(Plcase note: we write time-dependence e-\' of normal modes, GZ write c- Al. So our
cigenvalucs (7-19b) are the negatives of GZ's, and we have changed some other notation
accordingly.) The complete label i is (±, n, k) with n = 1,2,3,-.-. and 0 < k < oo. The
parameter p is the pair R, P.
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Local bifurcation values are determined by A+ =k 0 for each n and k. All A-' < 0.
Then ihe mode (+,,n, k) changes from decaying (A< 0) to growing (A > 0) as A increases
through zero. (Note all A's are real.) See Fig. 7.1.

2! -n= 3

F --2

Fig. 7.1 Showing the eigenvalues_,Ank for k = 2 and n = 1, 2, 3 as functions of 1?. Top:
P = 3, middle: P -- 1, bottom: P=

These critical lRayleigh numbers come out to be

Riak = k-2y 3  (7-20)

from (7-19b), independent of P. So PR~? increases monotonically in n for any k. The
smallest critical Rayleigh number -R = (27/4)7r 4 (at n = 1 aind k = 7r/2 ). 'R1 is thus
the threshold for convection; for R < R1  657.5 there is only the quiescent solution (7-2).

The wave number k in tLe x-direction can be fixed by various experimenital techniques, for
xample, by thc aspect ratio of the cell approximating the infinite plane horizontal layer

of the thcory (see Chap. 8). We consider- it fixed hereafter. Then if R,,,k <fl < R,,,+1 k-,
thcre will be a comp~licated convection with m growing modes and the rest, decaying modes.
Thus it would seem reasonable to try to approximate the nonlinear motion in this regime
b)y a Galerkin approximation including these m modes plus possibly a few othrs. (The
flow is, after all, nonlinear, so we cannot rule out the influcnce of deccaying mods, even as
i -- }oo.)

Let us fix k and assume Rlk < 1? < R2 k. Then the unstable subspace E"L will be ID
only, sp)anned by gi gj'j, since A~k > 0. All other modes are decaying, e F8 . If we
want a physically good Gaherkin approximation with M > 1 modes, how do we choose the
further modes? There is currently no clear, agreed-upon algorithm for this choice. The
pioneering work of Lorenz (1963) and succeeding work have provided some hints. For
example, g2 g+ should certainly be included. We can understand tis by noting that
the nonlinear terms in (7-18) generate this mode from g+k in the sense of (7-11). Namely,
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if F acts on the single mode g,,, it produces the mode g+. This idea cAi M ffti ito
a precise algOrithm for generating a sequence of impro iing Gaerkiii APpproihatibus (see
Ingiahim, 1990).

So now, as a simple ihodel Galerkin approximation, take

(X,t) = c1(t)g,(X) + C2(t)42.(X), (7-. 2i)

where x E 2 stands for (x, z). From (7-19) the normal modes aie

9= -'asin 7rz sin kxi 9 = 0 1o ) (7 22)

l sin rzcoskx

where we took b+,. = = d and set a= a+ determined by (7-i9c), while a2  a+
does not occur, see g2. Put this into the pde's (7-i8) and truncate at the two modes kept,
as described above. The main work comes in computing the coefficients fj(d) iii (7-16).
Because of the simple form of the normal modes for the Rayleigh problem, (7-il) is ti-ej
asid this algebra is in fact fnite: F acting on a finite sum , ccb, produces only a finite
sum E fa Oc. This is traced to the simple tigonometric identities

sin lB sin9 O= 1[cos(l - m)O - cos(l + m)O],
2

1
cos 1 cos O = 1[cos(l - m)O + cos(l + 71)O], (7- 23)

2

1
sinlO cosmo = -[sin(l- m)O + sin(l + n)9j.

In our problem, with normal modes (7-22), we encounter only the cross products

sin rz cos27rz = 1(sin3,rz - sin7rz),

sin rz cos ,z sin 2r.- (7-24)

as can be verified. Since we keep only the two modes gi and g2, the sin37rz will not
contribute at all. Eventually we arrive at the flow (7-16) for M = 2. By solving it
numerically we can get some idea of the actual flow near Ri k.

Pi-ob. 7.1 Carry through the Galcrkin approximation (7-21). For the flow (7-16)
you should find

= + 'a, a ) 2 = A2 2 - 2 (7-25)
P(a3  -c,)2

where a1 = ark, a3 = a-k determined by (7-19c) with b+ = b= 1 and A = A+ > 0,

20o < O.
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Prob. 7.2 Carry through the threc-normal mode approximation

1(x,t) = c1(t)g 1(x) + c2(t)g2(X) + c3(t)g 3 (X)

with g3 = g- and gi, g2 as before.

This latter flow in 3 is equivalent to the 3-Galerkin mode approximation of Lorenz (1963)
for k = ir/V-, as can be verified.

7.6 Cautionary Remarks

The short survey of the general Galerkin method in section 7.4 is deceptively simple. The
real work is concealed in the equations (7-6) and (7-12). The reduction to normal form (7-
6) depends on which fields one wants to isolate; the others are eliminated at the expense
of raising the differential order. For example, (7-5a) is fourth order, while the original
equations are only second order. When 3D motion is considered, the representation

v = Vpo vtor Vx (V x ro) + V x rw, (7-26)

which satisfies the incompressible constraint V -v = 0 identically, is often used. This
already increases the differential order by two, and further manipulation to separate the
equations for the poloidal and toroidal stream functions -0 and w as much as possible
increases it still further.

As to (7-12), it takes considerable stamina to do the algebra which results in the explicit
coefficients f,(c) when .M' is not small. Further, this algebra need not be finite: finite
number of terms on the right of (7-11), when a finite linear combination of modes is the
input on the left. This infinite sum may also involve integrals. This, unfortunately, is
the case usually encountered - the Rayleigh problem has an unusual simplicity because
of the simple, finite closure properties of trigonometric functions under multiplication. In
fact, the Galerkin method with m growing modes is only practicable when the nonlinear
operator F generates a few further modes with nonnegligible coefficients fa(c). It is hard to
say a priori which pde-systems and b.c.'s guarantee this criterion. But the reader should
not forget that we are confronting real nonlinear motion laws head on by the Galerkin
method. Neat, simple solutions cannot be expected.

Working out probs. 7.1 and 7.2 will give the serious reader an understanding of the general
Galerkin method. There is no substitute for the actual labor of applying the nonlinear
operator to a sum of normal modes, producing a general Galerkin vector, then re~xpressing
this as a sum of normal modes.

7.7 Patterns of Convection

Wc look at the pattern of convection for our simple Rayleigh problem. By (7-4)

= Ox = (7-27)
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Since we have 2D motion with no ydependence, the convection must be in the form of
"U-rolls," With axes parallel to the y-axis. For a single mode we get

v. oc sinnrz cos kx , v. oc -k-'nr cos nrz sin kx (7-28)

from (7-19a). The velocity nodes (v = 0) are at the lattice points.

(kxj h*z) -(p i/2, q 7r/2) ; p, q integers, both eveni or both odd. (7-29)

Further, the stability of these velocity fixed points is

p, q both odd =* center ; p, q both even =: saddle point. (7-30)

This is most easily seen by drawing velocity vectors along the points of the horizontal and
vertical lines through lattice points (7-29), using (7-28). The streamlines of these rolls fill
otit the squares, they are not circles around the centers. The boundaries of the squares
are streamlines, the separatrices of the saddle points. See Fig. 7.2.

nwz I j

3w 9 nodes

E velocity
streamlines

I

W/2.

,kx -1/2I N 3W/2
Fig. 7.2 Convection roll fluid flow patterns
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8. EXPERIMENTAL REALIZATIONS OF NONLINEAR DYNAMICS

8.1 Introduction

So far we have seen several theoretical "paths to chaos." There is the period-doubling route
2 -cycles --+ "chaos" as n -- oo in 1D maps, caused by increasing the parameter. Then
there is the route n-tori -- KAM tori plus stochastic layers ("chaos") from the break-up of
resonance zones in Hamiltonian dynamics. This is caused by increasing the strength of a
nonintegrable perturbation to an integrable Hamiltonian. Then there is the intermittency
route: periodic motion interrupted by bursts of "chaotic" behavior, which approaches a
fully "chaotic" regime as some parameter is varied. All of these routes have been seen
experimentally. We describe a few of these experiments briefly in this chapter.

We shall discuss pde systems in the rest of this section, focusing on incompressible viscous
fluid flow. To see the various stable regimes, the bifurcations connecting them, the
associated universal numbers, etc., it is usually sufficient to measure any of the physical
fields, say v., v1 , v, or T, at a fixed point in space as a function of time.

This brings up the question: what is the connection of the actual fluid velocity and
temperature distributions in 3D configuration space and the mathematical image of it, the
Al functions of time cl(t), c2(t), .-. cM(t) which we study in a Galerkin approximation?
This is determined of course by the expansion

¢(x,) = c c g(W (8-1)

of the fields in normal modes gi. From that we can understand the following correspon-
dences.

a. A stable fixed point c' of the flow

= Aici + fi(c), (8-2)

= 0, all i, corresponds to a stable stationary fluid motion (and temperature distribution
understood hereafter), typically convection rolls.

b. If the flow (8-2) shows a stable periodic orbit (limit cycle) ci(t + T) = ci(t), all
t, then the fluid motion becomes periodic with period T, a regime called oscillatory. (A
critical Reynolds number R, = vL/v governs the onset of oscillatory motion. Here v =
characteristic velocity, and L and v were defined in chap. 7.) Period-doubling in the flow
at a bifurcation value of the Rayleigh number leads to a bifurcation in the fluid motion to
an oscillatory motion of period 2T. If, finally, the flow enters a "chaotic" regime, say it is
chaotic in the precise sense of definition (5-5), the fluid motion is correspondingly chaotic.
One could in principle measure the sensitive dependence of the fluid quantities, say T(r, t),
by varying the pde initial conditions slightly.

c. On fixing the wave number k by experimental tcclniques, the following is
presumably the basic idea. Experiments use small rectangular pa rallclopipedal cells to
approximate the infinite horizontal layer of theory (section 7.3). See Fig. 8.1.
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z

Lx

Fig. 8.1 Experimental "rectangular" cell of height L and x-width L

First, L, >> Ly is desirable. Second, if an integral number I of identical convection rolls
form, one has kL = 17r (see Fig. 7.2), which fixes k.

8.2 Some Specific Experiments

8.2.1 Pde Systems

a. Libchaber and Maurer (1982). Liquid 4He in a small cell, whose top and bottom
were highly conducting plates. Two bolometers imbedded in the upper plate give local
temperature readings. The cell dimension "favored" two or three convection rolls. The
Prandtl number was small, 0 < P < 1. Temperatures were in the range 2.5-4.5K. The
temperature difference AT0 = AL (cf. (7-2)) was only the order of mK for the onset of
,convection.

As the Rayleigh number was increased above the regime of stable stationary convection,
they saw: first, oscillatory motion of a frequency vi (which increased linearly with R),
then the appearance of a second, incommensurable frequency v2, then frequency locking
V2 -- v1 /2, then a cascade of subharmonics (period-doubling) v/2, v1/4, v,/8, vi/16, ..
resolved up to v, /16. These are all obtained from the signal T (t) of one of the bolometers.
Other regimes were also seen, which we skip here.

Frequency locking is a phenomenon in nonlinear oscillators whereby for two close enough
frequencies vil, v2 of the motion v2 suddenly jumps to a subharmonic of v1. The reader is
referred to Bak (1986).

Let R,, be the period-doubling bifurcation values of the Rayleigh number. It was foupd
that

= lim R1 - R,,-1
n-oo R+ 1 - R,
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to the observed resolution. Cf. 6 = 4.6692... for the corresponding logistic map ratio.

b. Libcnaber, Laroche, and Fauve (1982). Liquid mercury in a small cell with top

and bottom plates of copper. A single bolometer was imbedded in the bottom plate.
The aspect ratio of the cell "favored" four convection rolls. The rolls were stabilized
by a uniform magnetic field parallel to their axes. (We remark that this goes beyond the
system (7-1) into MHD, or magnetohydrodynamics. MHD is the proper dynamics for some
extremely important and interesting areas, for example, plasma physics, stellar interiors,
the geodynamo (source of the Earth's magnetic field).)

As the Rayleigh number was raised beyond the regime of stable convection rolls, oscillatory
motion set in. Then a subharmonic cascade v1 , v1/2, v1 /4, v1/8, v/16 was seen in the
reading T(t) of the bolometer. See Fig. 8.2 for the time series T(t) and its power spectrum.

The number 6 (8-3) was observed to be ; 4.4, nearer the universal value of the logistic
map.

3.47

3.52

3.62

3.65

0I I I 2

t (sec)

Fig. 8.2a Time series T(t) of the temperature for various Rayleigh numbers R. R, is our
R, = absolute minimum of the Rnk (see chap. 7) (From Libcliaber, Laroche, and Fauve
(1982), with permission)

For the theory of the complicated set of stable regimes and their bifurcations, see Busse
(1978). For the experiments summarized in this chapter, see Cvitanovi6 (1984, part 2).
From now on our descriptions will be briefer.

c. Gollub and Swinney (1975). They measured a fluid velocity component at a fixed
point in a rotating fluid. The system is an incompressible viscous fluid, but is not exactly
that of the convective system (7-1).
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fig. 8.2b Power spectrum- of T(t). Arrows indicate the peak at vj. (From Libchaber,
Laroche, and Fauve (1982), with permission)

d. B~erge' et al. (1988). They measured v,, locally and an averaged VT in silicone
oil, where the Prandtl number P is large, P ;:: 130. They found evidence of intermittency,
(section 3.10.3)

8.2.2 Other Systems

e. Hudson and Mankin (1981). A chemical system, the Belousov-Zhabotinskii
reaction. They measured the concentration of one chemical species by an indirect method.
The system here is an actual finite-dimensional flow, cf. the simple Brusselator model of
section 2.7.1.

f. Arecchi et al. (1982). A quantum optical system, a periodically perturbed C0 2
laser. Mathematically, the system is a nonautonomous flow in R2 (thus an autonomous
system in one higher dimension).

g. Testa, et al. (1982). An electronic system, a driven nonlinear oscillator. This
is a nonautonomous flow in R 2. Electronic systems with their precise controls and
measurements, allow the cleanest tests of the theory.

h. Guevara, Glass, and Shrier (1981). Living matter system (!), cardiac cells perturbed
by electrical current pulses.
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APPENDIX A
GENERAL LINEAR STABILITY ANALYSIS

We consider the linear flow = Ax, x E RN , A =- real N x N matrix. In the general
case the N proper eigenvectors ei of A, see (2-4), are not linearly independent (= do not
span RN). A simple example in R2 is ( 11). The double eigenvalue A = 1 has only one

linearly independent eigenvector ('). However, in any case we can introduce the generalized

eigenvectors, which do span 3 N . The vector f is called a generalized eigenvector of A to
eigenvalue A if (A- A1)Pf = 0 for some integer p, 1 p p N. (A- 1)

For p = 1, f reduces to an ordinary, or proper, eigenvector.

Let fi, i = 1, 2,..- N, be the linearly independent generalized eigenvectors. For matrix
A = (aij), say they have components fij, that is, fij is the jth component of vector fi.
Then A can be put into Jordan canonical form by the similarity transformation T- 1 AT,
by usinr the matrix T whose ijth matrix element is Tq Ea fij. That is, the vector fi forms
the ith column of the matrix T. If the fi are properly ordered, A takes Jordan canonical
form, namely A is in block form

B 2  (A-2)

©0 Bq

with submatrices Bk along the diagonal, where each Bk has the form

A 1
B (A -3)

That is, a single eigenvalue A on the main diagonal, l's along the main superdiagonal, and
zeros elsewhere. The reader can easily check that this includes the case of A diagonalizable.
Then the Bk are all 1 x 1, simply the eigenvalues Ak of A. It is also clear that if all the N

eigenvalues Ai are different, A must be diagonalizable.

To test your understanding of this, try to do the following exercises.

Ex. A.1

a. Given a generalized eigenvector f, let p be the minimal exponent for which
(A-i) holds. Prove that the vectors f, (A - A1)f, (A - A1) 2f, (A - A1)P-lf are linearly
independent.

b. If p = N in part (a), we have N linearly independent vectors ei = (A - A1)'f,
i = 0,1, 2, ... N - 1. Show that in this case, if the ei are taken as basis elements, A has
the form (A-4) of a single Jordan block. (Hint: remember the relation

N
Aei=Eajiej , i=1,2,...N

j=1

defining the matrix elements of aji of a linear operator A.)
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APPENDIX B

PROOF OF NO SD IN THE QUANTUM-MECHANICAL SELF-CORRELATION

This map of the state vector is defined

C(t,r) _ ((t)10(t + r)) , t = tine, r a const. (B - 1)

This is a complex number; the corresponding metric d is the absolute value of the difference.
Thus, given 110' - il < 8 small, we want to prove

AC I('(t:(t + r))- (4(t)b(t + 7-)) (B - 2)

always small, where ¢(0) =_ 7, 01(0) -b', and both are normalized.

Now k(t) = U(t, 0) 4P(0), ?P(t + r) = U(t + r, 0) 0(0), and similarly for 0'(t) and 0'(t + r),
where U is the unitary time-evolution operator. Here we place no restriction on the QM
system : 7 has any dimension, including co; the energy operator is any whatsoever, and
may depend explicitly on t. We can thus rewrite

(4'(t)10"(t + 7)) = (0'10(t, r)10), (B - 3)

where 0(t, r) = U-1 (t) U (t + r), and the same for 0.

Now we need a convenient representation for any 0' close to ?P, such that 11[' - Oil = Si
say, 0 < 81 < S. This is

= N-1 (0 + 1X), where llxll = 1, (xl¢) = 0,

N =_ (1 + 8')'2- (B -4)

as the reader can verify. We repeat: any state 0' in the S-neighborhood 110' - 4l < 8 can
be represented as in (B-4) for some unit state X normal to 4 and some 61 < S.

Put (B-4) into (B-3). We get

(¢t[014") = N -2 [([0101) + S'(xI[U[x) + 28, Re(XIO[)]. (B - 5)

This is then substituted into AC, equation (B-2). Now we use some elementary inequalities
on complex numbers and the Schwarz inequality in QM:

I(alb)1 _ [[ail •]blI , (B - 6)

where (alb) is the scalar product of two vectors in 'H and [[a[[2 - (ala), etc. We get

AC = (N-2 - 1)(4'IOI) + N-2I(XIOIx) + 2N-'S Re(xlOI4')
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_ ,v-_Otl{¢,)i -. ,, -. l(XJFJX~l +1 2XI---b, [ < - --

~~2( (1(B 9Y 2  1

W- V 26 ,(+, 2z6 1 1 fall(and all 7)-(-)

Here tire Schir/ar inequality pare I40-101 5 1XI - =11M I since 0mJ 01

and the unikary 0 does not. change the nom- Similarly for the other terms.
No- the formal proof that C(t, 7) is Lyapuno" stable at any initial state , thus has no

SD (5-2)2 is obvious, but let us carry it th--ough to the end for carity. Refer to DcI. (5-6).

Given an c > 0. Then for GP' - €00 <,E(c), where we take 8(c) to satisf

2b(--+ b) <e (B -8)

we have AC < 2(1+ 5) <,E. all f Q.E.D.
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GLOSS-ARY OF PRINCIPAL TERMS

The terms marked with are defined for both fows (continuous time systems) and map
dynamics (discrete time systems). In this eossary, only the definitions for flows are given.
The emendations needed to make the definitions apply to discrete time s-stems can be
found by consulting Chapter 3, especially sections 3.2 - 3.8.

algorithmic complexity (AC) - The algorithmic complexity K(spr) of the finite word
s, is the lenth (numk.cr of s3mbols) of the shortest algorithm which will print the word.

analytic function - A real-ialued function f of real variables x E R-' is analytic in a
neighborhood V C W", if f(x) admits a power series expansion in x about every point
xo E V.

asymptotically stables - The fixed point x* is asynptotically stable if it is stable and
for every neighborhood V C U of z* a neighborhood 14 C V of x* exists such that
O -Axo) ' -+ +oo, for every zo E V.

attracting set - A closed and invariant set A is called an attracting set if I a neighborhood
V of A such that 6t(x) E V for t > 0 and 6 1(x) --+ A. f - +oc, for all C ,'. This definition
can be strengthened by requiring some extra properties such as indecomposability (A
contains a dense orbit), generalized dimension in some range. "chaotic" flow, (.,c., and
then such sets are called attractors or strange attractors.

attractor --see attracting set.

autonomous flow - If the defining equations of a flow i = f(x,t) f(.) do not depend
explicitly on t, the flow is said to be autonomous.

bifurcation' - The sudden qualitative change in a flow caused by an arbitrarily small
change in its velocity field f(x), that is, such that the flows before and after the bifurcation
cannot be c ntinuously deformed into each other. More precisely, the parameter value Pb
of the flow i = fl,(x) is called a bifurcation value if the flow is not structurally stable
at p = Ub. This means that there exist arbitrarily small perturbations ,1 f(x), S2f(x) of
flab(s) such that the perturbed flow i = fb () + 61 f() is not to; logically equivalent to
the perturbed flow i = fl, (s) + S2f(x).

cascade - See map dynamics.

center* - A fixed point x* is a , r if it is stable but not asymij, t lically stable.

center subspace (Ec)* - A cenr subspace is the subspace of .ic phase space for a.
linear autonomous flow i = Ax (where A is a real N x N matrix) which is spanned by
the subset {w1 , w2,-- wNAjof eigenvectors of A such that ReAl = 6.

dissipative system -An autonomous flow ± = f(s) in R ' is called issipative if V- f

Z-=1O < 0 there. Since f(x) is the velocity field of the flow in phase s race, this negative
divergence implies that comoving volume elements are shrinking in time. Hence a nonzero
volume of RN asymptotically shrinks to volume 0 under the flow.

finite word -A finite word SN is a string of N letters from some alphabet , for example
L = {1,2,.. nz}. A special case is f = {0,1}, the binary alphabet.
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fixed point (x' - A fixcd point x of a flow i = f(x) is defined by i - = 0.

flow - A -sicm of N first order ordinazy differential equations in time f,

dx

defines a flow.

Hamilton-Jacobi (H-J) equation - The Hamilton-Jacobi equation is the single partial
differential equation

H(q.WaI 1,q) = E = const-,

for Hamilton's characteristic function W.

Hamiltonian system - The flow

4= H/p, i = -OHlaq, qp E R

in R-" N = 2n, is a Hamiltonian system of n degrees of freedom. H - H(q,p,t) is
called the Hamiltonian. If H does not explicitly depend on t, the flow is autonomous, and
H(q(),p(t)) is a constant (or integral) of the motion. In other words, H is conserved.

homeomorphism - A homeomorphism h : U -- V maps open set U into open set V such
that h is continuous and h- 1 exists and is continuous.

hyperbolic* - A fixed point x* is called hyperbolic (sometimes nondegenerate) if Df(x*)
has no eigenvalue A with ReA = 0, where Df(x*) is the Jacobian matrix evaluated at the
fixed point. That is, if Ec = 0, the zero vector.

integrable Hamiltonian system - There are three ways to define an integrable Hamil-
tonian system:

1) A Hamiltonian system is integrable if the solution curves qS1(xo)
= (q(qo,po, t),p(qo,po, t)) arc analytic in x0 = (qo,po) and in t.

2) A Hamiltonian system is integrable if there exist n independent analytic constants
of the motion F(q(t),p(t)) = const., i = 1, 2,... n.

3)A Hamiltonian system is integrable if its Hamilton-Jacobi equation admits a com-
plete solution.

invariant set - Set S is invariant if Oi(S) C S, -co < t < oo.

local bifurcation* - A local bifurcation at the fixed point x* of the flow f,(x) occurs
when an eigenvalue A of the Jacobian matrix Dfi,(x*) crosses the imaginary axis in the
complex eigenvalue plane. If ReA(yb) = 0 and this zero is isolated, pb is called a local
bifurcation value.

manifold - A manifold is a. "continuous" set like a curve, surface, volume, etc., or
tcchnically: locally just like R" for some positive integer M.
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map dynamics - Let F be a map from Z'v into 3R" which is continuous with continuous
mrst drivatives. written F: R-" R', F E C - P determines a dynamics in which time

is discrea by iteration, nanely

X,+ =F(x.) , n = integer

A map dynamics is also called a cascade.

phase space' - The space of all states of a system. For a flow in R1 N, phase space is -3Z"

or that subset U C R" in which the flow is confined.
saddle point* - A hyperbolic fixed point x- is called a saddle point if the stable subspace

E- and the unstable subspace E' of the phase space are both #0, the zero vector.

sensitive dependence (SD) on initial conditions - The dynamics D with orbit
function (S and metric d(x',x) has sensitive dependence on initial conditions at state
x if there exists an e > 0 such that, for any neighborhood AV of x there exists an x' E At
and a t > 0 such that d(.i(x'), 6t(x)) > e.

sink* - A fixed point x* is called a sink if it is asymptotically stable.

source* - A hyperbolic fixed point x* is called a source if the stable subspacc E" of the
phase space = 0, the zero vector.

stable fixed point* - A fixed point x* is stable in U if for every neighborhood V C U
of xv there is a neighborhood V C V of x* such that every solution x(t) = i(x 0 ) with
x0 E Tri is defined and E V for all t > 0.

stable manifold* (W) - The stable manifold IVS of a hyperbolic fixed point x* is the
set of all those points which converge to x* under the flow. That is, all x E phase space
such that Ot(x) --+ x*, t -- +co.

stable subspace*E - A stable subspace E- is the subspacc of the phase space for a
linear autonomous flow i = Ax (where A is a real N x N matrix), which is spanned by
the subset {vI , v2 , ... vN I of eigenvectors of A such that ReAl < 0.

strange attractor - see attracting set.

structurally stable - see bifurcation value.

topologically equivalent* - The f-flow and the g-flow in sets X and Y rcspectivcly arc
topologically equivalent if and only if there exists a homeomorphisin h : X - Y such that
for every t1 , It o 01 2 0o h for some t 2.

topologically transitive - For a dynamics D with orbit function Ot, V is topologically
transitivc if, for any pair of opcn sets U1, U2 C V, the image of U under thc dynamics
intersects U2 at some time: ot(U1 ) n U2 5 Ofor some time t > 0.

unstable fixed point* - The fixed point x* is unstable in U if it is not stable, that is,
if 3 a neighborhood V C U of x* such that for all neighborhoods lI C V of x* 3 an orbit
based at xo E V which V V for some t > 0.

unstable manifold* (IF") - The unstable manifold Wu of x* is the set of all those points
which "diverge from x* under the flow" or, more precisely, all those points which converge
to x* as time runs backwards: Or(x) -* x*, t -4 -oo.

unstable subspace*Eu - An unstable subspace E' is the subspace of the plase space
for a linear autonomous flow .i: = Ax (where A is a real A\ x N matrix), which is spaimed
by ihe slibsei {I ,102,' TuIN. of eigenvectors of A such that. RcA, > 0.
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